92 resultados para Elton-Gruber


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constraining variations in marine N2-fixation over glacial-interglacial timescales is crucial for determining the role of the marine nitrogen cycle in modifying ocean productivity and climate, yet paleo-records from N2-fixation regions are sparse. Here we present new nitrogen isotope (d15N) records of bulk sediment and foraminifera test-bound (FB) nitrogen extending back to the last ice age from the oligotrophic Gulf of Mexico (GOM). Previous studies indicate a substantial terrestrial input during the last ice age and early deglacial, for which we attempt to correct the bulk sediment d15N using its observed relationship with the C/N ratio. Both corrected bulk and FB-d15N reveal a substantial glacial-to-Holocene decrease of d15N toward Holocene values of around 2.5 per mil, similar to observations from the Caribbean. This d15N change is most likely due to a glacial-to-Holocene increase in regional N2-fixation. A deglacial peak in the FB-d15N of thermocline dwelling foraminifera Orbulina universa probably reflects a whole ocean increase in the d15N of nitrate during deglaciation. The d15N of the surface dwelling foraminifera Globigerinoides ruber and the corrected bulk d15N show little sign of this deglacial peak, both decreasing from last glacial values much earlier than does the d15N of O. universa; this may indicate that G. ruber and bulk N reflect the euphotic zone signal of an early local increase in N2-fixation. Our results add to the evidence that, during the last ice age, the larger iron input from dust did not lead to enhanced N2-fixation in this region. Rather, the glacial-to-Holocene decrease in d15N is best explained by a response of N2-fixation within the Atlantic to the deglacial increase in global ocean denitrification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oceans take up more than 1 million tons of CO2 from the air per hour, about one-quarter of the anthropogenically released amount, leading to disrupted seawater chemistry due to increasing CO2 emissions. Based on the fossil fuel-intensive CO2 emission scenario (A1F1; Houghton et al., 2001), the H+ concentration or acidity of surface seawater will increase by about 150% (pH drop by 0.4) by the end of this century, the process known as ocean acidification (OA; Sabine et al., 2004; Doney et al., 2009; Gruber et al., 2012). Seawater pH is suggested to decrease faster in the coastal waters than in the pelagic oceans due to the interactions of hypoxia, respiration, and OA (Cai et al., 2011). Therefore, responses of coastal algae to OA are of general concern, considering the economic and social services provided by the coastal ecosystem that is adjacent to human living areas and that is dependent on coastal primary productivity. On the other hand, dynamic environmental changes in the coastal waters can interact with OA (Beardall et al., 2009).