943 resultados para Declination
Resumo:
A paleomagnetic study was made on the deep-marine sediments and volcanic rocks drilled by Ocean Drilling Program Leg 126 in the Izu-Bonin forearc region (Sites 787, 792, and 793). This study evaluates the sense and amount of the tectonic drift and rotation associated with the evolution of the Philippine Sea Plate and the Izu-Bonin Arc. Alternating-field and thermal demagnetization experiments show that most of the samples have stable remanence and are suitable for paleomagnetic studies. Paleomagnetic declinations were recovered by two methods of core orientation, one of which uses a secondary viscous magnetization vector of each specimen as an orientation standard, and the other of which is based on the data of downhole microresistivity measurement obtained by using a formation microscanner. Oligocene to early Miocene samples show 10° to 14° shallower paleolatitudes than those of the present. Middle Miocene to early Oligocene samples show progressive clockwise deflections (up to ~80°) in declination with time. These results suggest large northward drift and clockwise rotation of the Izu-Bonin forearc region since early Oligocene time. Considering previous paleomagnetic results from the other regions in the Philippine Sea, this motion may reflect large clockwise rotation of the whole Philippine Sea Plate over the past 40 m.y.
Resumo:
We investigated two lignite quarries in northern Greece for orbital and suborbital climate variability. Sections Lava and Vegora are located at the southern and northern boundaries of the Ptolemais Basin, a northwest southeast elongated intramontane basin that contains Upper Miocene to Lower Pliocene lacustrine sediments. Sediments show cyclic alterations of marl-rich (light), and coal-rich or clay-rich (dark) strata on a decimeter to meter scale. First, we established low-resolution ground-truth stratigraphy based on paleomagnetics and biostratigraphy. Accordingly, the lower 67 m and 65 m that were investigated in both sections Vegora and Lava, respectively, belong to the Upper Miocene and cover a time period of 6.85 to 6.57 and 6.46 to 5.98 Ma at sedimentation rates of roughly 14 and 22 cm/ka. In order to obtain a robust and high-resolution chronology, we then tuned carbonate minima (low L* values; high magnetic susceptibility values) to insolation minima. Besides the known dominance of orbital precession and eccentricity, we detected a robust hemi-precessional cycle in most parameters, most likely indicative for monsoonal influence on climate. Moreover, the insolation-forced time series indicate a number of millennial-scale frequencies that are statistically significant with dominant periods of 1.5-8 kyr. Evolutionary spectral analysis indicates that millennial-scale climate variability documented for the Ptolemais Basin resembles the one that is preserved in ice-core records of Greenland. Most cycles show durations of several tens of thousands of years before they diminish or cease. This is surprising because the generally argued cause for Late Quaternary millennial-scale variability is associated with the presence of large ice sheets, which cannot be the case for the Upper Miocene. Possible explanations maybe a direct response to solar forcing, an influence on the formation of North Atlantic Deep Water through the outflow of high-salinity water, or an atmospheric link to the North Atlantic Oscillation.