444 resultados para DEPTH, soil


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Western Wright Valley, from Wright Upper Glacier to the western end of the Dais, can be divided into three broad geomorphic regions: the elevated Labyrinth, the narrow Dais which is connected to the Labyrinth, and the North and South forks which are bifurcated by the Dais. Soil associations of Typic Haplorthels/Haploturbels with ice-cemented permafrost at < 70 cm are most common in each of these geomorphic regions. Amongst the Haplo Great Groups are patches of Salic and Typic Anhyorthels with ice-cemented permafrost at > 70 cm. They are developed in situ in strongly weathered drift with very low surface boulder frequency and occur on the upper erosion surface of the Labyrinth and on the Dais. Typic Anhyorthels also occur at lower elevation on sinuous and patchy Wright Upper III drift within the forks. Salic Aquorthels exist only in the South Fork marginal to Don Juan Pond, whereas Salic Haplorthels occur in low areas of both South and North forks where any water table is > 50 cm. Most soils within the study area have an alkaline pH dominated by Na+ and Cl- ions. The low salt accumulation within Haplorthels/Haploturbels may be due to limited depth of soil development and possibly leaching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antarctic terrestrial ecosystems have poorly developed soils and currently experience one of the greatest rates of climate warming on the globe. We investigated the responsiveness of organic matter decomposition in Maritime Antarctic terrestrial ecosystems to climate change, using two study sites in the Antarctic Peninsula region (Anchorage Island, 67°S; Signy Island, 61°S), and contrasted the responses found with those at the cool temperate Falkland Islands (52°S). Our approach consisted of two complementary methods: (1) Laboratory measurements of decomposition at different temperatures (2, 6 and 10 °C) of plant material and soil organic matter from all three locations. (2) Field measurements at all three locations on the decomposition of soil organic matter, plant material and cellulose, both under natural conditions and under experimental warming (about 0.8 °C) achieved using open top chambers. Higher temperatures led to higher organic matter breakdown in the laboratory studies, indicating that decomposition in Maritime Antarctic terrestrial ecosystems is likely to increase with increasing soil temperatures. However, both laboratory and field studies showed that decomposition was more strongly influenced by local substratum characteristics (especially soil N availability) and plant functional type composition than by large-scale temperature differences. The very small responsiveness of organic matter decomposition in the field (experimental temperature increase <1 °C) compared with the laboratory (experimental increases of 4 or 8 °C) shows that substantial warming is required before significant effects can be detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In three typical sandy soils of Northern Germany the mobility of radioactive fission products of technetium, iodine, ruthenium and zirconium have been investigated in dependence of the hydrodynamic and physico-chemical soil properties. The laboratory experiments, which simulated fall-out events, used soil columns (1 m length, 30 cm diameter) taken as undisturbed as possible. By measurements of the breakthrough curves in the percolate and of the depth distribution of radionuclides in the soil columns after 6 months the average transport velocity could be determined. These values could be compared with the average water velocity measured by 3H tagging. Three qualitative mobility relations were observed: Ranker: Tc > Ru > I > Zr; Podsol: Tc > Ru > I > Zr; Brown forest soil: Tc = Ru > I > Zr. Relations between some physico-chemical soil properties and the retardation of radionuclides due to adsorption could be observed (eg. retardation of iodine and technetium by organic substances). The average retardation factors of the radionuclides and the hydrodynamic soil parameters are used in a model which gives a quantitative assessment of the hazard of groundwater contamination by a fall-out event in areas covered with comparable soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO2 leakage from subsurface storage sites is one of the main concerns connected with the CCS technology. As CO2 leakages into near surface formations appear to be very unlikely within pilot CCS projects, the aim of this work is to emulate a leakage by injecting CO2 into a near surface aquifer. The two main questions pursued by the injection test are (1) to investigate the impact of CO2 on the hydrogeochemistry of the groundwater as a base for groundwater risk assessment and (2) to develop and apply monitoring methods and monitoring concepts for detecting CO2 leakages in shallow aquifers. The presented injection test is planned within the second half of 2010, as a joint project of the University of Kiel (Germany), the Helmholtz-Centre for Environmental Research (Leipzig, Germany) and the Engineering Company GICON (Dresden, Germany). The test site has been investigated in detail using geophysical methods as well as direct-push soundings, groundwater well installation and soil and groundwater analyses. The present paper presents briefly the geological and hydrogeological conditions at the test site as well as the planned injection test design and monitoring concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted a high-resolution study of a unique Holocene sequence of wind-blown sediments and buried soils in Southern Siberia, far from marine environment influences. This was accomplished in order to assess the difference between North Atlantic marine and in-land climate variations. Relative wind strength was determined by grain size analyses of different stratigraphic units. Petromagnetic measurements were performed to provide a proxy for the relative extent of pedogenesis. An age model for the sections was built using the radiocarbon dating method. The windy periods are associated with the absence of soil formation and relatively low values of frequency dependence of magnetic susceptibility (FD), which appeared to be a valuable quantitative marker of pedogenic activity. These events correspond to colder intervals which registered reduced solar modulation and sun spot number. Events, where wind strength was lower, are characterized by soil formation with high FD values. Spectral analysis of our results demonstrates periodic changes of 1500, 1000 and 500 years of relatively warm and cold intervals during the Holocene of Siberia. We presume that the 1000 and 500 year climatic cycles are driven by increased solar insolation reaching the Earth surface and amplified by other still controversial mechanisms. The 1500 year cycle associated with the North Atlantic circulation appears only in the Late Holocene. Three time periods - 8400-9300 years BP, 3600-5100 years BP, and the last ~250 years BP - correspond to both the highest sun spot number and the most developed soil horizons in the studied sections

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world's largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model - ArcVeg - to evaluate how two factors (soil organic nitrogen (SON) levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (high arctic), D (northern low arctic) and E (southern low arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 °C caused an increase of 665 g/m**2 in total biomass at the high SON site in subzone E, but only 298 g/m**2 at the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g/m**2 at the high SON site in contrast to 184 g/m**2 at the low SON site in subzone E. Our results suggest that high SON can support greater plant biomass and plant responses to climate warming, while low SON and grazing may limit plant response to climate change. In addition to the first order factors (SON, bioclimate subzones, grazing and temporal climate warming), interactions among these significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotopes of sedimentary nitrogen and organic carbon are widely used as proxy variables for biogeochemical parameters and processes in the water column. In order to investigate alterations of the primary isotopic signal by sedimentary diagenetic processes, we determined concentrations and isotopic compositions of inorganic nitrogen (IN), organic nitrogen (ON), total nitrogen (TN), and total organic carbon (TOC) on one short core recovered from sediments of the eastern subtropical Atlantic, between the Canary Islands and the Moroccan coast. Changes with depth in concentration and isotopic composition of the different fractions were related to early diagenetic conditions indicated by pore water concentrations of oxygen, nitrate, and ammonium. Additionally, the nature of the organic matter was investigated by Rock-Eval pyrolysis and microscopic analysis. A decrease in ON during aerobic organic matter degradation is accompanied by an increase of the 15N/14N ratio. Changes in the isotopic composition of ON can be described by Rayleigh fractionation kinetics which are probably related to microbial metabolism. The influence of IN depleted in 15N on the bulk sedimentary (TN) isotope signal increases due to organic matter degradation, compensating partly the isotopic changes in ON. In anoxic sediments, fixation of ammonium between clay lattices results in a decrease of stable nitrogen isotope ratio of IN and TN. Changes in the carbon isotopic composition of TOC have to be explained by Rayleigh fractionation in combination with different remineralization kinetics of organic compounds with different isotopic composition. We have found no evidence for preferential preservation of terrestrial organic carbon. Instead, both TOC and refractory organic carbon are dominated by marine organic matter. Refractory organic carbon is depleted in 13C compared to TOC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to examine the presence and diversity of Archaea within mineral and ornithogenic soils from 12 locations across the Ross Sea region. Archaea were not abundant but DNA sufficient for producing 16S rRNA gene clone libraries was extracted from 18 of 51 soil samples, from four locations. A total of 1452 clones were analysed by restriction fragment length polymorphism and assigned to 43 operational taxonomic units from which representatives were sequenced. Archaea were primarily restricted to coastal mineral soils which showed a predominance of Crenarchaeota belonging to group 1.1b (>99% of clones). These clones were assigned to six clusters (A through F), based on shared identity to sequences in the GenBank database. Ordination indicated that soil chemistry and water content determined archaeal community structure. This is the first comprehensive study of the archaeal community in Antarctic soils and as such provides a reference point for further investigation of microbial function in this environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of pedogeomorphological, geochronological and paleobotanical investigations are presented covering the last ca. 4,000 years. The study sites are located in the heavily degraded Kyichu River catchment around Lhasa at 3,600-4,600 m a.s.l. Repeatedly, colluvial sediments have been recorded overlying paleosols. These deposits can be divided into i) coarse-grained sediments with a high proportion of stones and boulders originating from alluvial fans and debris flows, ii) matrix supported sediments with some stones and boulders originating from mudflows or combined colluvial processes such as hillwash plus rock fall, and iii) fine-grained sediments originating from hill wash. The IRSL multi-level dating of profile QUG 1 points to a short-time colluvial sedimentation between 1.0 ± 0.1 and 0.8 ± 0.1 ka. In contrast, dated paleosols of profile GAR 1 (7,908 ± 99 and 3,668 ± 57 BP) encompass a first colluvial episode. Here, the upper colluvial sedimentation took place during several periods between 2.6 ± 0.3 and 0.4 ± 0.1 ka. For the first time in Tibet, a systematic extraction, determination and dating of charcoals from buried paleosols was conducted. The charcoals confirm the Late Holocene presence of juniper forests or woodlands in a now treeless, barren environment. A pollen diagram from Lhasa shows a distinct decline of pollen of the Jumperus-type around 4,140 ± 50 BP, which is interpreted as indicating a clearing of forests on the adjacent slopes. It is assumed that the environmental changes from forests to desertic rangelands since ca. 4,000 BP have been at least reinforced by humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic soils contain a large fraction of Earth's stored carbon. Temperature increases in the Arctic may enhance decomposition of this stored carbon, shifting the role of Arctic soils from a net sink to a new source of atmospheric CO2. Predicting the impact of Arctic warming on soil carbon reserves requires knowledge of the composition of the stored organic matter. Here, we employ solid state 13C nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to investigate the chemical composition of soil organic matter collected from drained thaw-lake basins ranging in age from 0 to 5500 years before present (y BP). The 13C NMR and FTIR-PAS data were largely congruent. Surface horizons contain relatively large amounts of O-alkyl carbon, suggesting that the soil organic matter is rich in labile constituents. Soil organic matter decreases with depth with the relative amounts of O-alkyl carbon decreasing and aromatic carbon increasing. These data indicate that lower horizons are in a more advanced stage of decomposition than upper horizons. Nonetheless, a substantial fraction of carbon in lower horizons, even for ancient thaw-lake basins (2000-5500 y BP), is present as O-alkyl carbon reflecting the preservation of intrinsically labile organic matter constituents. Climate change-induced increases in the depth of the soil active layer are expected to accelerate the depletion of this carbon.