98 resultados para Crash Recorders.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduced nitrate supply to the subarctic North Pacific (SNP) surface during the last ice age has been inferred from coupled changes in diatom-bound d15N (DB-d15N), bulk sedimentary d15N, and biogenic fluxes. However, the reliability of bulk sedimentary and DB-d15N has been questioned, and a previously reported d15N minimum during Heinrich Stadial 1 (HS1) has proven difficult to explain. In a core from the western SNP, we report the foraminifera-bound d15N (FB-d15N) in Neogloboquadrina pachyderma and Globigerina bulloides, comparing them with DB-d15N in the same core over the past 25 kyr. The d15N of all recorders is higher during the Last Glacial Maximum (LGM) than in the Holocene, indicating more complete nitrate consumption. N. pachyderma FB-d15N is similar to DB-d15N in the Holocene but 2.2 per mil higher during the LGM. This difference suggests a greater sensitivity of FB-d15N to changes in summertime nitrate drawdown and d15N rise, consistent with a lag of the foraminifera relative to diatoms in reaching their summertime production peak in this highly seasonal environment. Unlike DB-d15N, FB-d15N does not decrease from the LGM into HS1, which supports a previous suggestion that the HS1 DB-d15N minimum is due to contamination by sponge spicules. FB-d15N drops in the latter half of the Bølling/Allerød warm period and rises briefly in the Younger Dryas cold period, followed by a decline into the mid-Holocene. The FB-d15N records suggest that the coupling among cold climate, reduced nitrate supply, and more complete nitrate consumption that characterized the LGM also applied to the deglacial cold events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bio-logging studies suffer from the lack of real controls. However, it is still possible to compare indirect parameters between control and equipped animals to assess the level of global disturbance due to instrumentation. In addition, it is also possible to compare the behaviour of free-ranging animals between individuals equipped with different techniques or instruments to determine the less deleterious approach. We instrumented Adelie Penguins (Pygoscelis adeliae) with internal or external time-depth recorders and monitored them in parallel with a control group during the first foraging trip following instrumentation. Foraging trip duration was significantly longer in the internally-equipped group. This difference was due to a larger number of dives, reflecting a lower foraging ability or a higher food demand, and longer periods of recovery at the surface. These longer recovery periods were likely to be due to a reduced efficiency to ventilate at the surface, probably because the implanted devices pressurised adjacent organs such as air sacs. Moreover, descent and ascent rates were slightly lower in externally-equipped penguins, presumably because external instrumentation increased the bird drag. Looking at our results, implantation appears more disadvantageous - at least for short-term deployment - than external equipment in Adelie Penguins, while this method has been described to induce no negative effects in long-term studies. This underlines the need to control for potential effects due to methodological aspects in any study using data loggers in free-ranging animals, to minimise disturbance and collect reliable data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major oceanographic event preserved in the Cocos plate sedimentary column survived subduction and is recorded in the changing composition of Nicaraguan magmas. A uranium increase in these magmas since the latest Miocene (after 7 Ma) resulted from the 'carbonate crash' at 10 Ma and the ensuing high organic carbon burial in the sediments. The response of the arc to this paleoceanographic event requires near steady-state sediment recycling at this margin since 20 Ma. This relative stability in sediment subduction invites one of the first attempts to balance sedimentary input and arc output across a subduction zone. Calculations based on Th indicate that as much as 75% of the sedimentary column was subducted beneath the arc. The Nicaraguan margin is one of the few places to observe such strong links between the oceans and the solid earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable oxygen and carbon isotope (d18O and d13C) values measured in foraminiferal calcite are one of the primary tools used in paleoceanography. Diagenetic recrystallization of foraminiferal calcite can act to reset primary isotopic values, but its effects are typically poorly quantified. Here we test the impact of early stage diagenesis on stable isotope records generated from a suite of drill sites in the equatorial Pacific Ocean recovered during Ocean Drilling Program Leg 199 and Integrated Ocean Drilling Program Expedition 320. Our selected sites form paleowater and burial depth transects, with excellent stratigraphic control allowing us to confidently correlate our records. We observe large intersite differences in the preservation state of benthic foraminiferal calcite, implying very different recrystallization histories, but negligible intersite offsets in benthic d18O and d13C values. We infer that diagenetic alteration of benthic foraminiferal calcite (in sedimentary oozes) must predominantly occur at shallow burial depths (<100 m) where offsets in both the temperature and isotopic composition of waters in which the foraminifera calcified and pore waters in which diagenesis occurs are small. Our results suggest that even extensive recrystallization of benthic foraminiferal calcite results in minimal shifts from primary d18O and d13C values. This finding supports the long-held suspicion that diagenetic alteration of foraminiferal calcite is less problematic in benthic than in planktic foraminifera and that in deep-sea sediments routinely employed for paleoceanographic studies benthic foraminifera are robust recorders of stable isotope values in the fossil record.