97 resultados para Celebes
Resumo:
During ODP Leg 124, late middle Eocene to Quaternary sediment sequences were recovered from 13 holes drilled at five sites in the Celebes and Sulu basins. Paleomagnetic measurements and biostratigraphic studies using calcareous nannofossils, planktonic and benthic foraminifers, radiolarians, and diatoms were completed and summarized here. Two Neogene sediment sections recovered in the Sulu Basin yielded excellent core recoveries and magnetic reversal records, allowing direct magnetobiostratigraphic correlations for the Pliocene and Quaternary at Site 768 and for the middle Miocene to Quaternary at Site 769. The interpolated ages of biohorizons are not consistent between sites and only a few of them are in good agreement with previous calibrations. The differences may be the results of redeposition by turbidity currents and selective dissolution of key fossils.
Resumo:
New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacifc, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafoor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacifc Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower epsilon-Ne(T) for a given epsilon-Sr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Delta 7/4 Pb (5.3-9.3) and Delta 8/4 Pb (46.3-68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type ("normal") mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Ne(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacifc region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources.
Resumo:
Secondary carbonate minerals were recovered within the basalts at both ODP Sites 768 and 770 in the Sulu and Celebes seas. Petrographic and X-ray diffraction analyses indicate that the carbonates are calcites. Other alteration products recognized in the thin sections are smectites, iron oxides, and gypsum. The 13C values of carbonates from both sites range from 1.6 per mil to 2.3 per mil, which are indicative of inorganic carbonate formation with no contributions from 13C-depleted sources such as oxidized organic carbon or methane. The oxygen isotopes at Site 770 range from 30.8 per mil to 31.6 per mil, which indicates a pervasive circulation of cold seawater (9° to 12°C) during alteration of the Celebes Sea basalts. In contrast, carbonates associated with Site 768 basalts have less positive d18O values (21.0 per mil to 27.3 per mil). A lighter 18O isotopic signature indicates the formation of secondary calcite at either higher temperatures or in a system closed to seawater. The rapidly deposited pyroclastic flows at Site 768 would have limited water access to the crust very soon after its formation, which leads us to speculate that the carbonates in the Sulu Sea basalts were formed by isotopically modified fluids resulting from basalt alteration in a closed system.
Resumo:
The chemical analyses of ferromanganese encrustations found on the seabed west of Misool, eastern Indonesia, indicate that these deposits formed in a way different from that of world-wide occurring manganese nodules. Ferromanganese coated pebbles and fragments that were found in the deeper parts of the study area probably originate from nearby ridges. The ferromanganese crust on the upper part of a dolomite fragment of ?30 kg is likely to be formed by hydrogenous processes, whereas that from the lower part seems to be formed by diagenetic processes mainly. These assumptions are supported by pore-water data from two box cores taken in the same area. The manganese and iron profiles versus depth in these cores indicate a high flux of these metals to the uppermost sediment layer, and possibly into the overlying bottom water. Factor analysis for the principal components of the microprobe analytical results of the mainly hydrogenous ferromanganese crust demonstrates a strong correlation of manganese with the trace metals, of iron with phosphorus and an antipathetic relationship between iron and manganese. Similar results have also been reported for abyssal manganese nodules in the world oceans. Factor analysis for the principal components of the analytical data obtained for the diagenetic ferromanganese crust results in a clear dolomite (Ca/Mg) dilution factor only.