96 resultados para Cathy Henkel


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution sedimentary records of major and minor elements (Al, Ba, Ca, Sr, Ti), total organic carbon (TOC), and profiles of pore water constituents (SO42-, CH4, Ca2+, Ba2+, Mg2+, alkalinity) were obtained for two gravity cores (core 755, 501 m water depth and core 214, 1686 m water depth) from the northwestern Black Sea. The records were examined in order to gain insight into the cycling of Ba in anoxic marine sediments characterized by a shallow sulfate-methane transition (SMT) as well as the applicability of barite as a primary productivity proxy in such a setting. The Ba records are strongly overprinted by diagenetic barite (BaSO4) precipitation and remobilization; authigenic Ba enrichments were found at both sites at and slightly above the current SMT. Transport reaction modeling was applied to simulate the migration of the SMT during the changing geochemical conditions after the Holocene seawater intrusion into the Black Sea. Based on this, sediment intervals affected by diagenetic Ba redistribution were identified. Results reveal that the intense overprint of Ba and Baxs (Ba excess above detrital average) strongly limits its correlation to primary productivity. These findings have implications for other modern and ancient anoxic basins, such as sections covering the Oceanic Anoxic Events for which Ba is frequently used as a primary productivity indicator. Our study also demonstrates the limitations concerning the use of Baxs as a tracer for downward migrations of the SMT: due to high sedimentation rates at the investigated sites, diagenetic barite fronts are buried below the SMT within a relatively short period. Thus, 'relict' barite fronts would only be preserved for a few thousands of years, if at all.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive iron (oxyhydr)oxide minerals preferentially undergo early diagenetic redox cycling which can result in the production of dissolved Fe(II), adsorption of Fe(II) onto particle surfaces, and the formation of authigenic Fe minerals. The partitioning of iron in sediments has traditionally been studied by applying sequential extractions that target operationally-defined iron phases. Here, we complement an existing sequential leaching method by developing a sample processing protocol for d56Fe analysis, which we subsequently use to study Fe phase-specific fractionation related to dissimilatory iron reduction in a modern marine sediment. Carbonate-Fe was extracted by acetate, easily reducible oxides (e.g. ferrihydrite and lepidocrocite) by hydroxylamine-HCl, reducible oxides (e.g. goethite and hematite) by dithionite-citrate, and magnetite by ammonium oxalate. Subsequently, the samples were repeatedly oxidized, heated and purified via Fe precipitation and column chromatography. The method was applied to surface sediments collected from the North Sea, south of the Island of Helgoland. The acetate-soluble fraction (targeting siderite and ankerite) showed a pronounced downcore d56Fe trend. This iron pool was most depleted in 56Fe close to the sediment-water interface, similar to trends observed for pore-water Fe(II). We interpret this pool as surface-reduced Fe(II), rather than siderite or ankerite, that was open to electron and atom exchange with the oxide surface. Common extractions using 0.5 M HCl or Na-dithionite alone may not resolve such trends, as they dissolve iron from isotopically distinct pools leading to a mixed signal. Na-dithionite leaching alone, for example, targets the sum of reducible Fe oxides that potentially differ in their isotopic fingerprint. Hence, the development of a sequential extraction Fe isotope protocol provides a new opportunity for detailed study of the behavior of iron in a wide-range of environmental settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron stable isotope signatures (d56Fe) in hemolymph (bivalve blood) of the Antarctic bivalve Laternula elliptica were analyzed by Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) to test whether the isotopic fingerprint can be tracked back to the predominant sources of the assimilated Fe. An earlier investigation of Fe concentrations in L. elliptica hemolymph suggested that an assimilation of reactive and bioavailable Fe (oxyhydr)oxide particles (i.e. ferrihydrite), precipitated from pore water Fe around the benthic boundary, is responsible for the high Fe concentration in L. elliptica (Poigner et al., 2013, doi:10.1016/j.ecss.2013.10.027). At two stations in Potter Cove (King George Island, Antarctica) bivalve hemolymph showed mean d56Fe values of -1.19 ± 0.34 per mil and -1.04 ± 0.39 per mil, respectively, which is between 0.5 per mil and 0.85 per mil lighter than the pool of easily reducible Fe (oxyhydr)oxides of the surface sediments (-0.3 per mil to -0.6 per mil). This is in agreement with the enrichment of lighter Fe isotopes at higher trophic levels, resulting from the preferential assimilation of light isotopes from nutrition. Nevertheless, d56Fe hemolymph values from both stations showed a high variability, ranging between -0.21 per mil (value close to unaltered/primary Fe(oxyhydr)oxide minerals) and -1.91 per mil (typical for pore water Fe or diagenetic Fe precipitates), which we interpret as a "mixed" d56Fe signature caused by Fe assimilation from different sources with varying Fe contents and d56Fe values. Furthermore, mass dependent Fe fractionation related to physiological processes within the bivalve cannot be ruled out. This is the first study addressing the potential of Fe isotopes for tracing back food sources of bivalves.