97 resultados para CLIMATE OSCILLATIONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Past glacials can be thought of as natural experiments in which variations in boundary conditions influenced the character of climate change. However, beyond the last glacial, an integrated view of orbital- and millennial-scale changes and their relation to the record of glaciation has been lacking. Here, we present a detailed record of variations in the land-ocean system from the Portuguese margin during the penultimate glacial and place it within the framework of ice-volume changes, with particular reference to European ice-sheet dynamics. The interaction of orbital- and millennial-scale variability divides the glacial into an early part with warmer and wetter overall conditions and prominent climate oscillations, a transitional mid-part, and a late part with more subdued changes as the system entered a maximum glacial state. The most extreme event occurred in the mid-part and was associated with melting of the extensive European ice sheet and maximum discharge from the Fleuve Manche river. This led to disruption of the meridional overturning circulation, but not a major activation of the bipolar seesaw. In addition to stadial duration, magnitude of freshwater forcing, and background climate, the evidence also points to the influence of the location of freshwater discharges on the extent of interhemispheric heat transport.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been proposed that North Pacific sea surface temperature (SST) evolution was intimately linked to North Atlantic climate oscillations during the last glacial-interglacial transition. However, during the early deglaciation and the Last Glacial Maximum, the SST development in the subarctic northwest Pacific and the Bering Sea is poorly constrained as most existing deglacial SST records are based on alkenone paleothermometry, which is limited prior to 15 ka B.P. in the subarctic North Pacific realm. By applying the TEXL86 temperature proxy we obtain glacial-Holocene-SST records for the marginal northwest Pacific and the Western Bering Sea. Our TEXL86-based records and existing alkenone data suggest that during the past 15.5 ka, SSTs in the northwest Pacific and the Western Bering Sea closely followed millennial-scale climate fluctuations known from Greenland ice cores, indicating rapid atmospheric teleconnections with abrupt climate changes in the North Atlantic. Our SST reconstructions indicate that in the Western Bering Sea SSTs drop significantly during Heinrich Stadial 1 (HS1), similar to the known North Atlantic climate history. In contrast, progressively rising SST in the northwest Pacific is different to the North Atlantic climate development during HS1. Similarities between the northwest Pacific SST and climate records from the Gulf of Alaska point to a stronger influence of Alaskan Stream waters connecting the eastern and western basin of the North Pacific during this time. During the Holocene, dissimilar climate trends point to reduced influence of the Alaskan Stream in the northwest Pacific.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sensitivity to temperature of Mg/Ca ratios in the shallow-infaunal benthic foraminifera Uvigerina spp. has been assessed. Core-top calibrations over ~1-20 °C show a range in sensitivity of 0.065-0.084 mmol/mol/°C but few data are available spanning the temperature range anticipated in deep-sea records over glacial-interglacial cycles. In contrast to epibenthic foraminiferal species, carbonate ion saturation appears not to affect Mg/Ca significantly. A method based on estimating the ratio of the temperature sensitivity of foraminiferal Mg/Ca to that of d18Ocalcite shows that sensitivity for Mg/Ca at the high end of the observed core-top range (~0.1 mmol/mol/°C) is required for consistency with LGM-Holocene differences in each property as constrained by independent proxy data. This is supported by a Mg/Ca record for Uvigerina spp. generated for the Southern Ocean over the past 440,000 years from Ocean Drilling Program Site 1123 (Chatham Rise, New Zealand). The record shows variability that correlates with climate oscillations. The LGM deep ocean temperature derived from the Mg/Ca record is -1.1 ± 0.3 °C. Transformation to temperature allows estimates to be made of changes in bottom water temperature and seawater d18O and comparison made with literature records. Analysis reveals a ~2.5-kyr lead in the record of temperature over calcite d18O and a longer lead over seawater d18O. This is a reflection of larger phase offsets at eccentricity periods; phase offsets at tilt and precession are within error zero.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Little Ice Age (LIA) is one of the most prominent climate shifts in the past 5000 yrs. It has been suggested that the LIA might be the most recent of the Dansgaard-Oeschger events, which are better known as abrupt, large scale climate oscillations during the last glacial period. If the case, then according to Broecker (2000a, 2000b) Antarctica should have warmed during the LIA, when the Northern Hemisphere was cold. Here we present new data from the Ross Sea, Antarctica, that indicates surface temperatures were ~2 °C colder during the LIA, with colder sea surface temperatures in the Southern Ocean and/or increased sea-ice extent, stronger katabatic winds, and decreased snow accumulation. Whilst we find there was large spatial and temporal variability, overall Antarctica was cooler and stormier during the LIA. Although temperatures have warmed since the termination of the LIA, atmospheric circulation strength has remained at the same, elevated level. We conclude, that the LIA was either caused by alternative forcings, or that the sea-saw mechanism operates differently during warm periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the temperature reconstructions for the past two millennia are based on proxy data from various sites on land. Here we present a bidecadal resolution record of sea surface temperature (SST) in Southern Okinawa Trough for the past ca. 2700 years by analyzing tetraether lipids of planktonic archaea in the ODP Hole 1202B, a site under the strong influence of Kuroshio Current and East Asian monsoon. The reconstructed SST anomalies generally coincided with previously reported late Holocene climate events, including the Roman Warm Period, Sui-Tang dynasty Warm Period, Medieval Warm Period, Current Warm Period, Dark Age Cold Period and Little Ice Age. However, the Medieval Warm Period usually thought to be a historical analogue for the Current Warm Period has a mean SST of 0.6-0.8°C lower than that of the Roman Warm Period and Sui-Tang dynasty Warm Period. Despite an increase since 1850 AD, the mean SST in the 20th century is still within the range of natural variability during the past 2700 years. A close correlation of SST in Southern Okinawa Trough with air temperature in East China, intensity of East Asian monsoon and the El-Niño Southern Oscillation index has been attributed to the fluctuations in solar output and oceanic-atmospheric circulation.