123 resultados para Biomarker stratification
Resumo:
The current study presents quantitative reconstructions of tree cover, annual precipitation and mean July temperature derived from the pollen record from Lake Billyakh (65°17'N, 126°47'E, 340 m above sea level) spanning the last ca. 50 kyr. The reconstruction of tree cover suggests presence of woody plants through the entire analyzed time interval, although trees played only a minor role in the vegetation around Lake Billyakh prior to 14 kyr BP (<5%). This result corroborates low percentages of tree pollen and low scores of the cold deciduous forest biome in the PG1755 record from Lake Billyakh. The reconstructed values of the mean temperature of the warmest month ~8-10 °C do not support larch forest or woodland around Lake Billyakh during the coldest phase of the last glacial between ~32 and ~15 kyr BP. However, modern cases from northern Siberia, ca. 750 km north of Lake Billyakh, demonstrate that individual larch plants can grow within shrub and grass tundra landscape in very low mean July temperatures of about 8 °C. This makes plausible our hypothesis that the western and southern foreland of the Verkhoyansk Mountains could provide enough moist and warm microhabitats and allow individual larch specimens to survive climatic extremes of the last glacial. Reconstructed mean values of precipitation are about 270 mm/yr during the last glacial interval. This value is almost 100 mm higher than modern averages reported for the extreme-continental north-eastern Siberia east of Lake Billyakh, where larch-dominated cold deciduous forest grows at present. This suggests that last glacial environments around Lake Billyakh were never too dry for larch to grow and that the summer warmth was the main factor, which limited tree growth during the last glacial interval. The n-alkane analysis of the Siberian plants presented in this study demonstrates rather complex alkane distribution patterns, which challenge the interpretation of the fossil records. In particular, extremely low n-alkane concentrations in the leaves of local coniferous trees and shrubs suggest that their contribution to the litter and therefore to the fossil lake sediments might be not high enough for tracing the Quaternary history of the needleleaved taxa using the n-alkane biomarker method.
Resumo:
During the Integrated Ocean Drilling Program (IODP) Expedition 307 for the first time a cold-water coral carbonate mound was drilled down through its base into the underlying sediments. In the current study, sample material from within and below Challenger Mound, located in the Belgica carbonate mound province in the Porcupine Basin offshore Ireland, was investigated for its distribution of microbial communities and gas composition using biogeochemical and geochemical approaches to elucidate the question on the initiation of carbonate mounds. Past and living microbial populations are lower in the mound section compared to the underlying sediments or sediments of an upslope reference site. A reason for this might be a reduced substrate feedstock, reflected by low total organic carbon (TOC) contents, in the once coral dominated mound sequence. In contrast, in the reference site a lithostratigraphic sequence with comparatively high TOC contents shows higher abundances of both past and present microbial communities, indicating favourable living conditions from time of sedimentation until today. Composition and isotopic values of gases below the mound base seem to point to a mixed gas of biogenic and thermogenic origin with a higher proportion of biogenic gas. Oil-derived hydrocarbons were not detected at the mound site. This suggests that at least in the investigated part of the mound base the upward flow of fossil hydrocarbons, being one hypothesis for the initiation of the formation of carbonate mounds, seems to be only of minor significance.
Resumo:
In order to understand the processes controlling organic carbon deposition (i.e., primary productivity vs. terrigenous supply) and their paleoceanographic significance, three sediment cores (PS2471, PS2474. and PS2476) from the Laptev Sea continental margin were investigated for their content and composition of organic carbon. The characterization of organic matter indudes the determination of buk parameters (hydrogen index values and C/N ratios) and the analysis of specific biomarkers (n-alaknes, fatty acids, alkenones, and pigments). Total organic carbon (TOC) values vary between 0.3 and 2%. In general, the organic matter from the Laptev Sea continental margin is dominated by terrigenous matter throughout. However. significant amounts of marine organic carbon occur. The turbidites, according to a still preliminary stratigraphy probably deposited during glacial Oxygen Isotope Stages 2 and 4, are characterized by maximum amounts of organic carbon of terrigenous origin. Marine organic carbon appears to show enhanced relative abundances in the Termination I (?) and early Holocene time intervals, as indicated by maximum amounts of short chain n-alkanes, short-chain fatty acids, and alkenones. The increased amounts of faity acids, however, may also have a freshwater origin due to increased river discharge at that time. The occurrence of alkenones is suggested to indicate an intensification of Atlantic water inflow along the Eurasian continental margin starting at that time. Oxygen Isotope Stage l accumutation rates of total organic carhon are 0.3, 0.17, and 0.02 C/cm**2/ky in cores PS2476, PS2474, and PS2471, respectively.
Resumo:
A reconstruction of Holocene sea ice conditions in the Fram Strait provides insight into the palaeoenvironmental and palaeoceanographic development of this climate sensitive area during the past 8,500 years BP. Organic geochemical analyses of sediment cores from eastern and western Fram Strait enable the identification of variations in the ice coverage that can be linked to changes in the oceanic (and atmospheric) circulation system. By means of the sea ice proxy IP25, phytoplankton derived biomarkers and ice rafted detritus (IRD) increasing sea ice occurrences are traced along the western continental margin of Spitsbergen throughout the Holocene, which supports previous palaeoenvironmental reconstructions that document a general cooling. A further significant ice advance during the Neoglacial is accompanied by distinct sea ice fluctuations, which point to short-term perturbations in either the Atlantic Water advection or Arctic Water outflow at this site. At the continental shelf of East Greenland, the general Holocene cooling, however, seems to be less pronounced and sea ice conditions remained rather stable. Here, a major Neoglacial increase in sea ice coverage did not occur before 1,000 years BP. Phytoplankton-IP25 indices ("PIP25-Index") are used for more explicit sea ice estimates and display a Mid Holocene shift from a minor sea ice coverage to stable ice margin conditions in eastern Fram Strait, while the inner East Greenland shelf experienced less severe to marginal sea ice occurrences throughout the entire Holocene.
Resumo:
A novel and promising biomarker proxy for reconstruction of Arctic sea ice conditions was developed and is based on the determination of a highly branched isoprenoid with 25 carbons (IP25). IP25 records have been restricted to the last 150 kyr BP. We present a biomarker record from Ocean Drilling Program (ODP) Site 912, going back to the Pliocene-Pleistocene boundary and indicating that sea ice of variable extent occurred in the Fram Strait/southern Yermak Plateau area at least since about 2.2 Ma. Furthermore, our data support the idea that a combination of IP25 and open water, phytoplankton biomarker data ("PIP25 index") may give a more reliable and quantitative estimate of past sea ice cover (at least for the study area). The study reveals that the novel IP25/PIP25 biomarker approach has potential for semi-quantitative paleo-sea ice studies covering the entire Quaternary and could motivate further detailed high resolution research on ODP/IODP material using this proxy.