552 resultados para Biogeochemical flux in the deep sea
Resumo:
Measurements of Sr/Ca of benthic foraminifera show a linear decrease with water depth which is superimposed upon significant variability identified by analyses of individual foraminifera. New data for Cd/Ca support previous work in defining a contrast between waters shallower and deeper than ~2500 m. Measured element partition coefficients in foraminiferal calcium carbonate relative to sea water (D) have been described by means of a one-box model in which elements are extracted by Rayleigh distillation from a biomineralization reservoir that serves for calcification with a constant fractionation factor (alpha), such that D = (1 - f**alpha)/(l - f), where f is the proportion of Ca remaining after precipitation. A modification to the model recognises differences in element speciation. The model is consistent with differences between D[Sr], D[Ba], and D[Cd] in benthic but not planktonic foraminifera. Depth variations in D for Sr and Ba are consistent with the model, as are differences in depth variation of D[Cd] in calcitic and aragonitic benthic foraminifera. The shallower depth variations may reflect increasing calcification rates with increasing water depth to an optimum of about 2500 m. Observations of unusually lower DCd for some deep waters, not accompanied by similar [Sr], or D[Ba] may be because of dissolution or a calcification response to a lower carbonate saturation state.
Resumo:
This monograph forms the fourth part of the tenth volume of the scientific results of the voyage of the German exploring ship Valdivia in the Atlantic and Indian Oceans, made during the years 1898-1899. These volumes are published under the editorship of Prof. Chun, the zoologist of Leipzig, who was leader of the expedition ; and Prof. E. Philippi with the cooperation of Sir John Murray. The nature of the materials brought up at various points during the voyage is well illustrated by a series of plates, similar to those accompanying the Challenger volumes. Among the concretions from the Agulhas Bank were found phosphatic nodules containing 33 per cent, of calcium carbonate, 28 of calcium phosphate, 14.6 of calcium sulphate, and 4.8 of magnesium carbonate, with some ferric oxide, alumina, and silica. These nodules were dredged at a depth of 155 metres. Off the coast of Namibia, a large quantity of manganese nodules were also dredged. Their chemical analysis performed at the Mineralogical Institute of the University Jena show similar composition as the nodules recovered by the "Challenger" at station 253 in the Pacific Ocean.
Resumo:
Past water column stratification can be assessed through comparison of the d18O of different planktonic foraminiferal species. The underlying assumption is that different species form their shells simultaneously, but at different depths in the water column. We evaluate this assumption using a sediment trap time-series of Neogloboquadrina pachyderma (s) and Globigerina bulloides from the NW North Atlantic. We determined fluxes, d18O and d13C of shells from two size fractions to assess size-related effects on shell chemistry and to better constrain the underlying causes of isotopic differences between foraminifera in deep-sea sediments. Our data indicate that in the subpolar North Atlantic differences in the seasonality of the shell flux, and not in depth habitat or test size, determine the interspecies Delta d18O. N. pachyderma (s) preferentially forms from early spring to late summer, whereas the flux ofG. bulloides peaks later in the season and is sustained until autumn. Likewise, seasonality influences large and small specimens differently, with large shells settling earlier in the season. The similarity of the seasonal d18O patterns between the two species indicates that they calcify in an overlapping depth zone close to the surface. However, their d13C patterns are markedly different (>1 per mil). Both species have a seasonally variable offset from d13CDIC that appears to be governed primarily by temperature, with larger offsets associated with higher temperatures. The variable offset from d13CDIC implies that seasonality of the flux affects the fossil d13C signal, which has implications for reconstruction of the past oceanic carbon cycle.
Resumo:
Assemblages of living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity, were investigated in the intermonsoon period after the northeast monsoon in the Arabian Sea in spring 1997. Foraminiferal numbers show a distinct gradient from north to south, with a maximum of 623 foraminifera in 50 cm**3 at the northern site. High percentages of small foraminifera were found in the western and northern part of the Arabian Sea. Most stations show a typical vertical distribution with a maximum in the first centimeter and decreasing numbers with increasing sediment depths. But at the central station, high densities can be found even in deeper sediment layers. Diversity is very high at the northern and western sites, but reduced at the central and southern stations. Data and faunal assemblages were compared with studies carried out in 1995. A principal component analysis of intermonsoon assemblages shows that the living benthic foraminifera can be characterized by five principal component communities. Dominant communities influencing each site differ strongly between the two years. In spring 1997, stations in the north, west and central Arabian Sea were dominated by opportunistic species, indicating the influence of fresh sedimentation pulses or enhanced organic carbon fluxes after the northeast monsoon.
Resumo:
We have measured the 3He/3He and 3He/20 Ne ratios of thirty-nine pore water and gas samples in deep-sea sediments collected at twelve sites on the Pacific Ocean bottom during the cruises of Deep Sea Drilling Project Legs 87, 89, 90 and 92. The 3He/4He and 4He/20Ne ratios vary from 0.000000215 to 0.00000165 and from 0.29 to 20, respectively. He in the sample is composed of four components: (1) atmospheric He dissolved in seawater; (2) atmospheric He with mantle-derived He in Pacific bottom water; (3) in situ radiogenic He in the sediment; and (4) crustal He in the basement rock. Assuming that the 20Ne contents are constant with the value of seawater, the depth variations in the 4He/20Ne ratios at five Sites, 583D, 594, 597A, 598A and 504B, may provide useful information on 4He flux at the ocean bottom. The estimated 4He fluxes vary from 2000 to 40000 atoms cm**-2 s**-1 and are one to three orders of magnitude less than those calculated from the excess He in deep ocean water. An overall similarity between the geographical distribution of the 3He/4He ratios and heat flow data is found in the study area, between the East Pacific Rise across the Pacific Ocean and the Japanese Islands. The tendency is well explained by a conventional sea-floor spreading model.
Resumo:
Greenland stadial/interstadial cycles are known to affect the North Atlantic's hydrography and overturning circulation and to cause ecological changes on land (e.g., vegetation). Hardly any information, directly expressed as diversity indices, however, exists on the impacts of these millennial-scale variations on the marine flora and fauna. We calculated three diversity indices (species richness, Shannon diversity index, Hurlbert's probability of interspecific encounter) for the planktonic foraminifer fauna found in 18 deep-sea cores covering a time span back to 60 ka. Clear differences in diversity response to the abrupt climate change can be observed and some records can be grouped accordingly. Core SO82-05 from the southern section of the subpolar gyre, the cores along the British margin and core MD04-2845 in the Bay of Biscay show two modes of diversity distribution, with reduced diversity (uneven fauna) during cold phases and the reverse (even fauna) during warm phases. Along the Iberian margin high species diversity prevailed throughout most of the glacial period. The exceptions were the Heinrich stadials when the fauna abruptly shifted from an even to an uneven or less even fauna. Diversity changes were often abrupt, but revealed a high resilience of the planktonic foraminifer faunas. The subtropical gyre waters seem to buffer the climatic effects of the Heinrich events and Greenland Stadials allowing for a quick recovery of the fauna after such an event. The current work clearly shows that planktonic foraminifer faunas quickly adapt to climate change, albeit with a reduced diversity.
Resumo:
In September 1999 two short-term moorings with cylindrical sediment traps were deployed to collect sinking particles in bottom waters off the Ob and Yenisei river mouths. Samples were studied for their bulk composition, pigments, phytoplankton, microzooplankton, fecal material, amino acids, hexosamines, fatty acids and sterols and compared to suspended matter and surface sediments in order to collect information about the nature and cycling of particulate matter in the water column. Results of all measured components in sinking particles point to an ongoing seasonality in the pelagic system from blooming diatoms in the first phase to a more retention system in the second half of trap deployment. Due to a phytoplankton bloom observed north of the Ob estuary, flux rates were generally higher in the trap deployed off the Ob than off the Yenisei. The Ob trap collected fresh surface-derived particulate matter. Particles from the Yenisei trap were more degraded and resembled deep water suspension. This material may partly have been derived from resuspended sediments.
Resumo:
Biogeochemical measurements in sediment cores collected with a TV-MUC in the Black Sea during MSM15/1, Northwest Crimea (HYPOX Project), at water depths between 105-207 m. Sampling was performed along gradient of oxygen bottom water concentrations between oxic (150 µmol L-1), variable hypoxic (3-60 µmol L-1 O2) and anoxic, sulfidic conditions. concentrations of organic carbon (Corg) and nitrogen (N) were measured on finely powdered, freeze-dried subsamples of sediment using a using a Fisons NA-1500 elemental analyzer. For organic carbon determination samples were pre-treated with 12.5% HCl to remove carbonates. Chlorophyll a (chl a), phaeopigments (PHAEO) and chloroplastic pigment equivalents (CPE) was measured according to Schubert et al., (2005) and total hydrolyzable amino acids (THAA) and single amino acid: ASP, GLU, SER, HIS, GLY, THR, ARG, ALA, TYR, MET, VAL, PHE, ILE, LEU, LYS following Dauwe et al., 1998.