597 resultados para Asteromphalus arachne
Resumo:
Studies of diatoms from dredge samples collected on the island slope of the Kuril-Kamchatka Trench have allowed to recognize well-preserved marine diatom assemblages corresponding to assemblages of the followed Oligocene zones: Rhizosolenia oligocaenica (subzone ''a'', 33.6-31 Ma), Cavitatus rectus (29.6-28.2 Ma), and Rocella gelida (28.2-24.0 Ma) as identified in the North Pacific zonal scale. Description of these assemblages and their complete taxonomic composition are presented. Diversity of species together with abundance and degree of preservation of diatoms and accompanying siliceous microorganisms suggests their autochtonous origin and favorable conditions of their development. Assemblages of the Early Oligocene zones Rhizosolenia oligocaenica and Cavitatus rectus recognized in sediments of the outer zone of the Lesser Kuril Ridge (submarine slope of the Shikotan Island) and on the Vityaz' submarine ridge were most probably formed under conditions of a vast shelf, while assemblage of the Late Oligocene zone Rocella gelida encountered only in the region of the Lesser Kuril Ridge formed under more deep-water conditions, presumably, over an island slope. Deepening of the basin in the region of the outer zone of the Lesser Kuril Ridge in Late Oligocene probably reflects one of stages of evolution of the Kuril-Kamchatka Trench.
Resumo:
A high resolution mixed carbonate and siliciclastic sequence from DSDP Site 594 contains a detailed record of climate change in the late Pliocene. The sequence can be accurately dated by the LAD of Nitzschia weaveri, the LAD of Thalassiosira insigna, the LAD of T. vulnifica and the LAD of T. kolbei diatom datums. Carbonate content and delta18O signatures provide added resolution and place the sequence between isotope stage 100 and 92. The sequence contains well-preserved and diverse dinoflagellate cyst floras. Use of principal component (PCA) and canonical correspondence analyses (CCA) identifies changes in the assemblages that principally reflect warming and cooling trends. Species association with warmer climates included Impagidinium patulum, I. paradoxum and I. sp. cf. paradoxum while those from cooler climates include Invertecysta tabulata and I. velorum. CCA is shown to be a valuable method of determining the past environmental preferences of extinct species such as I. tabulata.
Resumo:
Remains of diatoms, molluscs, ostracods, foraminifera and pollen exines preserved in the sediments of Lago d'Averno, a volcanic lake in the Phlegrean Fields west of Naples, allowed us to reconstruct the changes in the ecological conditions of the lake and of the vegetation around it for the period from 800 BC to 800 AD. Lago d'Averno was at first a freshwater lake, temporarily influenced by volcanic springs. Salinity increased slowly during Greek times as a result of subsidence of the surrounding land. Saline conditions developed only after the lake was connected with the sea by a canal, when Portus Julius was built in 37 BC. The first post-Roman period of uplift ended with a short freshwater phase during the 7th century after Christ. Deciduous oakwoods around the lake was transformed into a forest of evergreen oaks in Greek times and thrived there - apparently almost uninfluenced by man - until it was felled, when the Avernus was incorporated into the new Roman harbour in 37 BC, to construct a shipyard and other military buildings there. Land-use was never more intense than during Roman times and weakest in Greek and Early Roman times, when the Avernus was considered a holy place, the entrance to the underworld.
Resumo:
The biostratigraphic distribution and qualitative relative abundance of Quaternary-Pliocene diatoms from Ocean Drilling Program Leg 188, Sites 1165 (64.380°S, 67.219°E) and 1166 (67.696°S, 74.787°E) offshore from East Antarctica, are documented in this report. The upper ~50 meters below seafloor (mbsf) of Hole 1165B consists of brown diatom-bearing silty clay spanning the upper Pleistocene to lower Pliocene. The diatom stratigraphy indicates a disconformity at ~17.1 mbsf of 0.5- to 0.6-m.y. duration. The integration of biostratigraphic and magnetostratigraphic data identified other disconformities at ~6.0, 14.4, 15.6, and 16.0 mbsf, but the duration of these hiatuses cannot be resolved through diatom biostratigraphy. In Hole 1166A, a narrow interval of diatomaceous Quaternary sediment is identified in the upper 2.92 mbsf and dated biostratigraphically at <0.38 Ma. The remaining Quaternary-Pliocene section is dominated by diamicton, except at ~114 mbsf, where two thin diatomaceous beds are present. The lower bed is ~65 cm thick, 2.5-2.7 to 2.7-3.2 Ma in age, and possibly disconformably overlain by the upper bed, which is ~15 cm thick and 1.8-2.0 to 2.1-2.5 Ma in age. The Pliocene assemblages in Hole 1166A contain components of both Southern Ocean and Antarctic continental shelf (Ross Sea) diatom floras.
Resumo:
Samples were examined for diatoms from 22 holes at 11 sites cored by ODP Leg 119 on the Kerguelen Plateau and in Prydz Bay, East Antarctica. Diatoms were observed in Oligocene through Holocene sediments recovered from the Kerguelen Plateau. The diatom flora from the Kerguelen Plateau is characterized by species such as Azpeitia oligocenica, Rocella gelida, Rocella vigilans, and Synedra jouseana in the Oligocene and Crucidenticula nicobarica, Denticulopsis hustedtii, Nitzschia miocenica, and Thalassiosira miocenica in the Miocene. This somewhat cosmopolitan assemblage gives way to a Pliocene and Holocene assemblage characterized by species such as Nitzschia kerguelensis, Thalassiosira inura, and Thalassiosira torokina, which are endemic to the Southern Ocean region. Samples examined from Prydz Bay are generally devoid of diatoms. The exception is Site 739, where diatoms occur sporadically in lower Oligocene and upper Miocene through Quaternary sediments. The Leg 119 diatom biostratigraphic results allow the development of a stratigraphic framework for the Indian sector of the Southern Ocean. This diatom zonation integrates diatom zonations developed previously for other sectors of the Southern Ocean. The zonation proposed here is based on biostratigraphic events of both geographically widespread and endemic species calibrated to the paleomagnetic stratigraphy. As such, this zonation has application throughout the Southern Ocean and allows correlation from the southern high latitudes to the low latitudes.