98 resultados para Art 71 Ley 222 de 1995


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed d18O and d13C stratigraphy has been generated from analysis of well-preserved Albian - Early Maastrichtian foraminifera from Deep Sea Drilling Project (DSDP) Sites 511 and 327 (Falkland Plateau; ~58°S - 62°S paleolatitude) in the southern South Atlantic, and Cenomanian and Coniacian - Santonian foraminifera from DSDP Site 258 (Naturaliste Plateau; ~58°S paleolatitude) in the southern Indian Ocean. These results, when combined with previously published Maastrichtian stable isotope data from Ocean Drilling Program (ODP) Site 690 (Weddell Sea, ~65°S paleolatitude), provide new insight into the climatic and oceanographic history of the southern high latitudes during Middle-Late Cretaceous time. The planktonic foraminifer d18O curves reveal a gradual warming of surface waters from the Albian through the Cenomanian followed by extremely warm surface waters from the Turonian through the early Campanian. Long-term cooling of surface waters began in the late early Campanian and continued through the end of the Maastrichtian. The benthic foraminifer d18O record generally parallels changes in the oxygen isotopic curves defined by shallow-dwelling planktonic foraminifera. The vertical oxygen and carbon isotopic gradients were relatively low during the Albian - Cenomanian, high from the Turonian - Early Campanian, and then low during the late Campanian and Maastrichtian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on continuously measured 222Rn activity concentrations in near-surface air at Neumayer Station in the period 1995-2011. This 17-year record showed no long-term trend and has overall mean ± standard deviation of (0.019 ± 0.012) Bq/m**3. A distinct and persistent seasonality could be distinguished with maximum values of (0.028 ± 0.013) Bq/m**3 from January to March and minimum values of (0.015 ± 0.009) Bq/m**3 from May to October. Elevated 222Rn activity concentrations were typically associated with air mass transport from the Antarctic Plateau. Our results do not support a relation between enhanced 222Rn activity concentrations at Neumayer and cyclonic activity or long-range transport from South America. The impact of oceanic 222Rn emissions could not be properly assessed but we tentatively identified regional sea ice extent (SIE) variability as a significant driver of the annual 222Rn cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August-September 2012. Sediment traps were deployed at 2-5 m and 20-25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.