993 resultados para Alkenone, C37 C38 normalized to total organic carbon
Resumo:
Holocene laminated sediments in Saanich Inlet, British Columbia, are interrupted by frequent, non-laminated, massive layers. These layers may be debris flows released by earthquakes or bioturbated sediments deposited during periods of relatively high bottom water oxygen concentration and/or low surface productivity, or both. We determined the organic carbon content and the concentration of a suite of redox-sensitive metals in bulk sediments at approximately 1-cm resolution across a laminated-massive-laminated interval (ODP Leg 169S Sample 1033B-4H-4,54-74), to determine the redox conditions under which the massive layer was deposited. Our results indicate that this massive interval was deposited under anoxic bottom waters. Manganese/Al ratios are consistently low throughout the massive section, while Mo/Al, Cd/Al, Re/Al, and U/Al ratios are enriched relative to their metal/Al ratios in detrital material (represented by Cowichan River suspended sediments). The concentration of organic carbon in the lower portion of the massive layer is higher than in the upper portion, which has a concentration similar to that in the overlying and underlying laminated sediments. Well-defined peaks in Mo/Al, Cd/Al, and Re/Al and a broad peak in U/Al occur in the lower portion of the massive layer. The positions of the Cd/Al, Re/Al, and Mo/Al peaks, as well as the increase in organic carbon content with depth in the massive layer, are best explained by a process of diagenetic redistribution of metals that occurred after the massive layer was emplaced.
Resumo:
The Cenomanian/Turonian (C/T) intervals at DSDP Sites 105 and 603B from the northern part of the proto-North Atlantic show high amplitude, short-term cyclic variations in total organic carbon (TOC) content. The more pronounced changes in TOC are also reflected by changes in lithology from green claystones (TOC<1%) to black claystones (TOC>1%). Although their depositional history was different, the individual TOC cycles at Sites 105 and 603B can be correlated using stable carbon isotope stratigraphy. Sedimentation rates obtained from the isotope stratigraphy and spectral analyses indicate that these cycles were predominately precession controlled. The coinciding variations in HI, OI, delta13Corg and the abundance of marine relative to terrestrial biomarkers, as well as the low abundance of lignin pyrolysis products generated from the kerogen of the black claystones, indicate that these cyclic variations reflect changes in the contribution of marine organic matter (OM). The cooccurrence of lamination, enrichment of redox-sensitive trace metals and presence of molecular fossils of pigments from green sulfur bacteria indicate that the northern proto-North Atlantic Ocean water column was periodically euxinic from the bottom to at least the base of the photic zone (<150 m) during the deposition of the black claystones. In contrast, the green claystones are bioturbated, are enriched in Mn, do not show enrichments in redox-sensitive trace metals and show biomarker distributions indicative of long oxygen exposure times, indicating more oxic water conditions. At the same time, there is evidence (e.g., abundance of biogenic silica and significant 13C-enrichment for OC of phytoplanktic origin) for enhanced primary productivity during the deposition of the black claystones. We propose that increased primary productivity periodically overwhelmed the oxic OM remineralisation potential of the bottom waters resulting in the deposition of OM-rich black claystones. Because the amount of oxygen used for OM remineralisation exceeded the amount supplied by diffusion and deep-water circulation, the northern proto-North Atlantic became euxinic during these periods. Both Sites 105 and 603B show trends of continually increasing TOC contents and HI values of the black claystones up section, which most likely resulted from both enhanced preservation due to increased anoxia and increased production of marine OM during oceanic anoxic event 2 (OAE2).
Resumo:
Concentrations of organic and inorganic nitrogen have been measured on Leg 80 sediments. The inorganic nitrogen content is relatively constant, 0.02-0.03 wt.%. Because most of the inorganic nitrogen occurs as NH3 or (NH4)+ fixed on clays, clay-poor sediments have lower inorganic nitrogen contents. Organic nitrogen content depends upon both the type and the quantity of organic matter present. In Leg 80 sediments, woody kerogens contain much less organic nitrogen than do kerogens of algal origin. Furthermore, pelagic samples of low organic carbon content have less organic nitrogen than predicted, because of loss during diagenesis. DSDP shipboard analytical procedures do not distinguish between organic and inorganic nitrogen. Great caution must therefore be exercised in interpreting C/N ratios.
Resumo:
A multiproxy analysis of Hole 911A (Ocean Drilling Program (ODP) Leg 151) drilled on the Yermak Plateau (eastern Arctic Ocean) is used to investigate the behaviour of the Svalbard/Barents Sea ice sheet (SBIS) during late Pliocene and early Pleistocene (~3.0-1.7 Ma) climate changes. Contemporary with the 'Mid-Pliocene (~3 Ma) global warmth' (MPGW), a warmer period lasting ~300 kyr with seasonally ice-free conditions in the marginal eastern Arctic Ocean is assumed to be an important regional moisture source, and possibly one decisive trigger for intensification of the Northern Hemisphere glaciation in the Svalbard/Barents Sea area at ~2.7 Ma. An abrupt pulse of ice-rafted debris (IRD) to the Yermak Plateau at ~2.7 Ma reflects distinct melting of sediment-laden icebergs derived from the SBIS and may indicate the protruding advance of the ice sheet onto the outer shelf. Spectral analysis of the total organic carbon (TOC) record being predominantly of terrigenous/fossil-reworked origin indicates SBIS and possibly Scandinavian Ice Sheet response to incoming solar radiation at obliquity and precession periodicities. The strong variance in frequencies near the 41 kyr obliquity cycle between 2.7 and 1.7 Ma indicates, for the first time in the Arctic Ocean, a close relationship of SBIS growth and decay patterns to the Earth's orbital obliquity amplitudes, which dominated global ice volume variations during late Pliocene/early Pleistocene climate changes.
Resumo:
Lower to middle Cretaceous sediments in the eastern Gulf of Mexico are richer in organic matter and have a more marine organic facies than their counterparts in the nearby western North Atlantic, suggesting that the Gulf was the more productive of the two areas. As in the western North Atlantic, the rate of supply of terrestrial organic matter was high when the rate of supply of noncarbonate clastic materials was high (at times of low sea level) and diminished as sea level rose. The rate of supply of marine organic matter was lower in the Early Cretaceous than in the Cenomanian, perhaps in response to the global rise in sea level over this period. Where they are thermally mature, the organic matterrich units drilled at Sites 535 and 540 should be excellent sources for liquid hydrocarbons. The Pleistocene sediments of the eastern Gulf are dominated by terrestrial organic matter representing Mississippi River effluent.