211 resultados para Al-Si-Cu(4) alloy
Resumo:
Seven opal-CT-rich and five quartz-rich porcellanites and cherts from Site 504 have a range in oxygen-isotope values of 24.4 and 29.4 per mil. In opal-CT rocks, d18O becomes larger with sub-bottom depth and with age. Quartz-rich rocks do not show these trends. Boron, in general, increases with decreasing d18O for porcellanites and cherts considered together, supporting the conclusion that boron is incorporated within the quartz crystal structure during precipitation of the SiO2. Silicification of the chalks at Site 504 began 1 m.y. ago - that is, 5 m.y. after sedimentation commenced on the oceanic crust. Temperatures of chert formation determined from oxygen-isotope compositions reflect diagenetic temperatures rather than bottom-water temperatures, and are comparable to temperatures of formation determined by down-hole measurements. Opal-A in the chalks began conversion to opal-CT when a temperature of 50°C was reached in the sediment column. Conversion of opal-CT to quartz started at 55 °C. Silicification occurred over a stratigraphic thickness of about 10 meters when the temperature at the top of the 10 meters reached about 50°C. It took about 250,000 years to complete the silica transformation within each 10-meter interval of sediment at Site 504. Quartz formed over a stratigraphic range of at least 30 meters, at temperatures of about 54 to 60°C. The time and temperatures of silicification of Site 504 rocks are more like those at continental margins than those in deep-sea, open-ocean deposits.
Resumo:
This data was collected during a cruise across Drake Passage in the Southern Ocean in February 2009. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.
Resumo:
We investigate the redistribution of terrigenous materials in the northeastern (NE) South American continental margin during slowdown events of the Atlantic Meridional Overturning Circulation (AMOC). The compilation of stratigraphic data from 108 marine sediment cores collected across the western tropical Atlantic shows an extreme rise in sedimentation rates off the Parnaíba River mouth (about 2°S) during Heinrich Stadial 1 (HS1, 18-15 ka). Sediment core GeoB16206-1, raised offshore the Parnaíba River mouth, documents relatively constant 143Nd/144Nd values (expressed as epsilonNd(0)) throughout the last 30 ka. Whereas the homogeneous epsilonNd(0) data support the input of fluvial sediments by the Parnaíba River from the same source area directly onshore, the increases in Fe/Ca, Al/Si and Rb/Sr during HS1 indicate a marked intensification of fluvial erosion in the Parnaíba River drainage basin. In contrast, the epsilonNd(0) values from sediment core GeoB16224-1 collected off French Guiana (about 7°N) suggest Amazon-sourced materials within the last 30 ka. We attribute the extremely high volume of terrigenous sediments deposited offshore the Parnaíba River mouth during HS1 to (i) an enhanced precipitation in the catchment region and (ii) a reduced North Brazil Current, which are both associated with a weakened AMOC.
Resumo:
This archive consists of the hydrographic data collected on Cruise 82-002 of C.S.S. Hudson, April 11 to May 2, 1982. 78 stations were occupied on a line running near 48°N from the mouth of the English Channel to the Grand Banks of Newfoundland. Pressure, temperature and salinity were measured by a Guildline digital CTP system. Salinity, dissolved oxygen, silicate, nitrate and phosphate were measured from water samples collected on the CTP upcasts. CTP and discrete bottle data and associated derived parameters are tabulated at standard levels. This is the digital version of the printed report (of 1989, see further details), published in 2006 with the information system Pangaea.
Resumo:
This report contains the occurrence data for dinoflagellate cysts recorded from 163 samples taken from Sites 902 through 906, during Ocean Drilling Program (ODP) Leg 150. The dinoflagellate cyst (dinocyst) stratigraphy has been presented in Mountain, Miller, Blum, et al. (1994, doi:10.2973/odp.proc.ir.150.1994), and was based on these data. This report provides the full dinocyst data set supporting the dinocyst stratigraphic interpretations made in Mountain, Miller, Blum, et al. (1994). For Miocene shipboard dinocyst stratigraphy, I delineated 10 informal zones: pre-A, and A through I, in ascending stratigraphic order. These zones are defined in Shipboard Scientific Party (1994a, doi:10.2973/odp.proc.ir.150.103.1994), and are based on my studies of Miocene dinocyst stratigraphy in the Maryland and Virginia coastal plain (de Verteuil and Norris, 1991, 1992; de Verteuil, 1995). This zonation has been slightly revised (de Verteuil and Norris, 1996), and the new formal zone definitions are repeated below. Each new zone has an alpha-numeric abbreviation starting with "DN" (for Dinoflagellate Neogene). The equivalence between the informal zones reported in Mountain, Miller, Blum, et al. (1994), and the new DN zones is illustrated in Figure 1. For clarity, I delineated both zonations in the range charts that accompany this report (Tables 1-6). De Verteuil and Norris (1996a), using these and other data, correlated the DN zonation with the geological time scale of Berggren et al. (1995). Figure 2 summarizes these correlations and can be used to check the chronostratigraphic position of samples in this report, as determined by dinocyst stratigraphy. A thorough discussion of the basis for, and levels of uncertainty associated with, these correlations to the Cenozoic time scale can be found in de Verteuil and Norris (1996a). The Appendix lists all the dinocyst taxa recorded during shipboard analyses of Leg 150 samples. Open nomenclature is used for undescribed taxa. The range charts and Appendix also include reference to several new taxa that de Verteuil and Norris (1996b) described from Miocene coastal plain strata in Maryland and Virginia. Names of these taxa in Tables 1 through 6 and in the Appendix of this report are not intended for effective publication as defined in the International Code of Botanical Nomenclature (ICBN, Greuter et al., 1994). Therefore, taxonomic nomenclature contained in this report is not to be treated as meeting the conditions of effective and valid publication (ICBN; Article 29).
Resumo:
The surface distributions of dissolved silicic acid, chlorophyll and diatom abundance were measured in the plume of the Mississippi River and adjacent waters during spring (late April and early May 1993) and summer (July 1992). In spring, the time of maximum river flow, there was an intense diatom bloom with a mean diatom abundance of 1.5 x 10**7 cells/l, more than an order of magnitude higher than in summer. Mixing curves of silicic acid concentration ([Si(OH)4]) versus salinity indicate that biological uptake within the river plume removed >99% of the Si(OH)4 supplied by the river in spring and 80 to 95% in summer. In spring [Si(OH)4] was occasionally depleted to <0.2 µM-among the lowest values ever reported from the ocean-with extensive depletion to >=0.5 µM over the shelf. In summer [Si(OH)4] was less severely depleted; the lowest measured was 0.93 µM and all others were >=2.4 µM. 30Si kinetic experiments were performed during both spring and summer to measure the degree to which the rate of Si uptake by the natural diatom assemblages was limited in situ by substrate availability. In spring the dependence of the specific uptake rate (V) on extracellular [Si(OH)4] conformed much more closely to the Michaelis-Menten saturation function than has been observed in past studies. Strong dependence of V on [Si(OH)4] was observed throughout the most Si(OH)4-depleted (<0.5 µM) region, where V was limited to 12 to 45% of the diatom assemblages' maximum uptake rate (Vmax). Half-saturation concentrations for Si uptake (Ks) averaged 0.85 uM (range = 0.48 to 1.71; n = 7) in spring, with the lowest values equal to the lowest previously reported for natural diatom assemblages. There was only 1 station in summer where V was limited by [Si(OH)4], and at that station Ks was 5.3 µM-quite high in comparison with previous studies. At stations where V was limited by [Si(OH)4], in both spring and summer, Chaetoceros spp. were numerically dominant; where there was no Si limitation other diatoms, usually Skeletonema costatum, dominated. The data thus indicate strong Si limitation in spring, with diatom assemblages well adapted to low [Si(OH)4], but little or no Si limitation in summer. Historical data suggest that coastal Si(OH)4 depletion and Si limitation may be recent phenomena in the northern Gulf of Mexico, resulting from increasing [NO3-] and decreasing [Si(OH)4] in the Mississippi River during the past 30 to 50 yr.
Resumo:
Benthic fluxes and pore-water compositions of silicic acid, nitrate and phosphate were investigated for surface sediments of the abyssal Arabian Sea during four cruises (1995-1998). Five sites located in the northern (NAST), western (WAST), central (CAST), eastern (EAST), and southern (SAST) Arabian Sea were revisited during intermonsoonal periods after the NE- and SW-Monsoon. At these sites, benthic fluxes of remineralized nutrients from the sediment to the bottom water of 36-106, 102-350 and 4-16 mmol/m**2/yr were measured for nitrate, silicic acid and phosphate, respectively. The benthic fluxes and pore-water compositions showed a distinct regional pattern. Highest fluxes were observed in the western and northern region of the Arabian Sea, whereas decreasing fluxes were derived towards the southeast. At WAST, the general temporal pattern of primary production, related to the NE- and SW-Monsoon, is reflected by benthic fluxes. In contrast, at sites NAST, SAST, CAST, and EAST a temporal pattern of fluxes in response to the monsoon is not obvious. Our results reveal a clear coupling between the general regional pattern of production in surface waters and the response of the benthic environment, as indicated by the flux of remineralized nutrients, though a spatially differing degree of decoupling during transport and remineralization of particulate organic matter and biogenic opal was observed. This has to be taken into account regarding budget calculations and paleoceanographic topics.
Resumo:
The present volume gives the observed physical and chemical data obtained by R.V. "Meteor" in the Indian Ocean during cruise 1964/65. The tables are based on the computations made by the National Oceanographic Data Center (NODC) in Washington. In addition to the normally communicated data, the tables contain four chemical parameters: alkalinity, ammonia, fluoride, and calcium.
Resumo:
As part of ongoing circulation studies in the Arctic, seawater samples for dissolved Ba concentrations were obtained during Sep.-Oct., 1992 at several locations in the Bering Strait, Eastern Chukchi and Southern Beaufort Seas. The results reveal a dynamic rang (10 to 150 nmol/kg) for this element in the Arctic equal to or greater than that in combined Atlantic, Indian and Pacific oceans. Lowest levels are observed in surface waters, with values tending to decrease northwards in the direction of currents generally flowing frorn the Bering Strait along the Alaskan coast. Low surfacc concentrations tend to be accompanied by relatively enriched near bottom levels. On the basis of these spatial distributions, hydrographic observations and a knowledge of its behavior in other marine settings, it appears that Ba can be significantly depleted from surface waters as a result of the highly seasonal biological aclivities over Arctic marginal shelves. Removal at the surface is counteracted to some extent by regeneration at depth or in the sediments and by riverine inputs. The biologically related drawdown is likely to enhance the contrast between 'background' surface Ba levels in the Arctic and waters imprinted by regeneration and/or rivers, These preliminary findings suggest that Ba holds particular promise for tracing river waters and the ventilation of halodine waters hy laterally sinking brines produced during ice formation over the shelves.