849 resultados para Acanthocardia aculeata
Resumo:
Late Eocene to Pleistocene planktonic foraminifers from Leg 120 Holes 747A and 749B on the Kerguelen Plateau were quantitatively analyzed. Microperforate tenuitellid forms dominate the Oligocene to middle Miocene, and 17 species (including the new species Tenuitella jamesi and Tenuitellinata selleyi) are recorded. A lineage zonation of tenuitellid foraminifers is proposed as an alternative scheme for refinement of the Oligocene-Miocene biostratigraphy in high latitudes. Progressive or abrupt alterations in morphological characters within this lineage, producing different morphotypes or species, coincided with prolonged or sudden changes in paleoclimate. These microperforate planktonic foraminifers thus appear to have potential as indicators of cold-water masses and temperature fluctuations in post-Eocene oceans.
Resumo:
We report on benthic foraminifer results from Site 717 in the Distal Bengal Fan. Only 80 out of 380 samples contained useful benthic foraminifer information. However, we were able to identify four assemblages: 1. A present-day one dominated by Nuttallides umbonifera with some North Atlantic species; 2. An agglutinated fauna consisting of one species; 3. A reworked assemblage consisting of shallow-water forms; and 4. A reworked fauna consisting of an abundance of all kinds of forms including Cretaceous species. The reworked assemblage 4, we believe, represents a period when fan sediments were blocked from this area by east-west trending intraplate deformation. In the remainder of the core section, sedimentation appears to be dominated by Fan deposition with abundant terrestrial debris. In the infrequent pelagic intervals, it appears that abyssal water masses changed little since the late Miocene.
Resumo:
Paleobathymetric assessments of fossil foraminiferal faunas play a significant role in the analysis of the paleogeographic, sedimentary, and tectonic histories of New Zealand's Neogene marine sedimentary basins. At depths >100 m, these assessments often have large uncertainties. This study, aimed at improving the precision of paleodepth assessments, documents the present-day distribution of deep-sea foraminifera (>63 µm) in 66 samples of seafloor sediment at 90-700 m water depth (outer shelf to mid-abyssal), east of New Zealand. One hundred and thirty-nine of the 465 recorded species of benthic foraminifera are new records for the New Zealand region. Characters of the foraminiferal faunas which appear to provide the most useful information for estimating paleobathymetry are, in decreasing order of reliability: relative abundance of common benthic species; benthic species associations; upper depth limits of key benthic species; and relative abundance of planktic foraminifera. R mode cluster analysis on the quantitative census data of the 58 most abundant species of benthic foraminifera produced six species associations within three higher level clusters: (1) calcareous species most abundant at mid-bathyal to outer shelf depths (<1000 m); (2) calcareous species most abundant at mid-bathyal and greater depths (>600 m); (3) agglutinated species mostly occurring at deep abyssal depths (>3000 m). A detrended correspondence analysis ordination plot exhibits a strong relationship between these species associations and bathymetry. This is manifest in the bathymetric ranges of the relative abundance peaks of many of the common benthic species (e.g., Abditodentrix pseudothalmanni 500-2800 m, Bolivina robusta 200-650 m, Bulimina marginata f. marginata 20-600 m, B. marginata f. aculeata 400-3000 m, Cassidulina norvangi 1000-4500 m, Epistominella exigua 1000-4700 m, and Trifarina angulosa 10-650 m), which should prove useful in paleobathymetric estimates. The upper depth limits of 28 benthic foraminiferal species (e.g., Fursenkoina complanata 200 m, Bulimina truncana 450 m, Melonis affinis 550 m, Eggerella bradyi 750 m, and Cassidulina norvangi 1000 m) have potential to improve the precision of paleobathymetric estimates based initially on the total faunal composition. The planktic percentage of foraminiferal tests increases from outer shelf to upper abyssal depths followed by a rapid decline within the foraminiferal lysocline (below c. 3600 m). A planktic percentage <50% is suggestive of shelf depths, and >50% is suggestive of bathyal or abyssal depths above the CCD. In the abyssal zone there is dramatic taphonomic loss of most agglutinated tests (except some textulariids) at burial depths of 0.1-0.2 m, which negates the potential usefulness of these taxa in paleobathymetric assessments.
Resumo:
In the present work Quaternary radiolarian assemblages from the Southwest Pacific were investigated due to their importance for correlation and identification of climatic changes. The studied Ocean Drilling Program (ODP) Site 1123 (Leg 181) is situated on the northern flanks of the Chatham Rise, 1100 kilometres offshore eastern New Zealand and in a water depth o f 3290 metres. It is situated just north of the Subtropical Convergence (STC) in temperate climatic conditions, influenced by the cold deep Deep Western Boundary Current (DWBC) and by the subtropical East Cape Current (ECC) in shallow water depths. A continuous record of 79 sediment samples from this site with a temporal resolution of ~15,000 years provided a medium-resolution record of radiolarian assemblages through the Quaternary. This allowed investigations on how radiolarian assemblages are influenced by climatic variations at obliquity and eccentricity bandwidth, with periodic variations of 40,000, 100,000 and 400,000 years, respectively. Emphasis was given to changes in radiolarian assemblages through the Mid-Pleistocene climate transition (MPT) that marks a fundamental reorganisation in Earth's climate system by change from 40,000 to 100,000 year cycles. Glacial and interglacial variations in oceanography were investigated. Especially the influence of the DWBC was examined due to its input of deep and cold waters to the Pacific Ocean, which plays an important role in Earth's climate system. 167 radiolarian counting groups were examined concerning variations in radiolarian abundance, preservation, diversity, the relative abundance of orders, families, and selected species in order to detect influences of past climatic variations in the Southwest Pacific. No significant changes in radiolarian assemblages were found in coincidence with the onset of the MPT. Investigations led to the recognition of four characteristic phases within the last 1.2 million years. Within one of these phases (Phase Ill), about 160,000 years after the onset of the MPT, fundamental changes in radiolarian assemblages occurred. Investigations yielded highest diversity and highest numbers of nassellarians in abundant samples, whereas sparse samples were mostly poorly preserved and were dominated by spumellarians. Abundance of certain radiolarian families in interglacials or glacials indicated their usefulness as indicators for climatic conditions at Site 1123. Trends o f selected taxa within these families supported the significance of warm- or cool-water preference of these families. Use of 67 radiolarian species as climate indicators showed abundance of warm-water assemblages within interglacials, whereas abundance of cool-water species was increased within glacials. Depth distributional patterns of 52 radiolarian species indicated a strong influence of shallow waters, possibly the EEC, within interglacials and increased influence of deep and intermediate waters, possibly of southern-sourced character and the DWBC in glacial stages.