434 resultados para 310-M0015B
Resumo:
The course of sea-level fluctuations during Termination II (TII; the penultimate deglaciation), which is critical for understanding ice-sheet dynamics and suborbital climate variability, has yet to be established. This is partly because most shallow-water sequences encompassing TII were eroded during sea-level lowstands of the last glacial period or were deposited below the present sea level. Here we report a new sequence recording sea-level changes during TII in the Pleistocene sequence at Hole M0005D (water depth: 59.63 m below sea level [mbsl]) off Tahiti, French Polynesia, which was drilled during Integrated Ocean Drilling Program Expedition 310. Lithofacies variations and stratigraphic changes in the taxonomic composition, preservation states, and intraspecific test morphology of large benthic foraminifers indicate a deepening-upward sequence in the interval from Core 310-M0005D-26R (core depth: 134 mbsl) through -16R (core depth: 106 mbsl). Reconstruction of relative sea levels, based on paleodepth estimations using large benthic foraminifers, indicated a rise in sea level of about 90 m during this interval, suggesting its correlation with one of the terminations. Assuming that this rise in sea level corresponds to that during TII, after correcting for subsidence since the time of deposition, a highstand sea-level position would be 2 ± 15 m above present sea level (masl), which is generally consistent with highstand sea-level positions in MIS 5e (4 ± 2 masl). If this rise in sea level corresponds to that during older terminations, the subsidence-corrected highstand sea-level positions (30 ± 15 masl for Termination III and 54 ± 15 masl for Termination IV) are not consistent with reported ranges of interglacial sea-level highstands (-18 to 15 masl). Therefore, the studied interval likely records the rise in sea level and associated environmental changes during TII. In particular, the intervening cored materials between the two episodes of sea-level rise found in the studied interval might record the sea-level reversal event during TII. This conclusion is consistent with U/Th ages of around 133 ka, which were obtained from slightly diagenetically altered (i.e., < 1% calcite) in situ corals in the studied interval (Core 310-M0005D-20R [core depth: 118 mbsl]). This study also suggests that our inverse approach to correlate a stratigraphic interval with an approximate time frame could be useful as an independent check on the accuracy of uranium-series dating, which has been applied extensively to fossil corals in late Quaternary sea-level studies.
Resumo:
Climate responses and changes in marine environments during the last deglaciation have been controversial and few paleoceanographic data are available from the tropical South Pacific, though this region is crucial in the investigations of ocean-atmosphere interactions. Integrated Ocean Drilling Program Expedition 310 was conducted to establish the time course of the postglacial sea-level rise at Tahiti in the South Pacific. A principal objective of this expedition was to examine the variation of marine environments during the last deglaciation. As fossil Porites coral is ideal for assessing past marine environments, we selected only Porites specimens from the many coral specimens retrieved, examined them by XRD, and dated them by the 14C method. In all, we obtained 17 pristine Porites specimens composed of only aragonite with ages from 15 to 9 ka. Then, we measured Mg/Ca, Ba/Ca, and U/Ca ratios and Cd contents as proxies for upwelling and sea surface temperature. Higher Ba/Ca ratios and Cd content together with lower reconstructed SSTs using U/Ca ratios in the coral specimens between 12.6 and 9.8 cal ka compared to around 15 cal ka suggest that upwelling and/or entrainment of subsurface water into mixed layer was enhanced around Tahiti during this period. This finding is consistent with previous reports and supports the idea that the South Pacific was characterized by La Niña-like conditions at least from 12.6 to 9.8 cal ka.
Resumo:
Deglacial reefs from Tahiti (IODP 310) feature a co-occurrence of zooxanthellate corals with microbialites that compose up to 80 vol% of the reef framework. The notion that microbialites tend to form in more nutrient-rich environments has previously led to the concept that such encrustations are considerably younger than the coral framework, and that they have formed in deeper storeys of the reef edifice, or that they represent severe disturbances of the reef ecosystem. As indicated by their repetitive interbedding with coralline red algae, the microbialites of this reef succession of Tahiti, however, formed immediately after coral growth under photic conditions. Clearly, the deglacial reef microbialites present in the IODP 310 cores did not follow disturbances such as drowning or suffocation by terrestrial material, and are not "disaster forms". Given that the corals and the microbialites developed in close spatial proximity, highly elevated nutrient levels caused by fluvial or groundwater transport from the volcanic hinterland are an unlikely cause for the exceptionally voluminous development of microbialites. That voluminous deglacial reef microbialites generally are restricted to volcanic islands, however, implies that moderately, and possibly episodically elevated nutrient levels favored this type of microbialite formation.