215 resultados para 3-17-1
Carbon and nitrogen content in sediment core DW85-017-1 of the Scotian Shelf, Lahave Basin (Table 3)
Resumo:
To enhance the limited information available about the palaeo-ecological significance of calcareous dinoflagellates, we have studied their lateral distribution in surface sediments of the equatorial and south Atlantic between 13°N and 36°S. Calcareous dinoflagellate cysts appear to be widely distributed throughout the studied area. In the surface sediments, concentrations (cyst per gram dry sediment) of the vegetative stage Thoracosphaera heimii are generally higher than that of the (presumably) calcareous resting cysts. Distribution patterns in surface sediments of Orthopithonella granifera (Fütterer) Keupp and Versteegh, Rhabdothorax spp. Kamptner., Sphaerodinella albatrosiana (Kamptner) Keupp and Versteegh S. albatrosiana praratabulated, Sphaerodinella tuberosa var. 1 (Kamptner) Keupp and Versteegh and S. tuberosa var. 2 and the ratios between these species have been compared with temperature, salinity, density and stratification gradients in the upper water column. Rhabdothorax spp. is characteristically present in sediments of more temperate regions characterized by high seasonality. Dinoflagellates producing these cysts are able to tolerate high nutrient concentrations, and mixing of the water column. S. albatrosiana is abundant in regions characterized by high sea surface temperatures and oligotrophic surface water conditions. In contrast, the distribution of S. tuberosa var. 2 is negatively related to temperature. The other cyst species did not show a characteristic pattern in relation to the studied environmental gradients. The ratio of Sphaerodinella tuberosa var. 2 to Orthopithonella granifera can be used for reconstructing the presence of stratification in the upper 50 m of the water column, whereas the ratios of S. tuberosa var. 2 to Sphaerodinella albatrosiana and of O. granifera to Rhabdothorax spp. might be used for palaeotemperature reconstructions. Calcareous dinoflagellate cysts are abundant in oligotrophic areas and may be useful for the reconstruction of palaeoenvironmental conditions.
Resumo:
The air trapped in freshly formed ice gives information concerning the ice formation processes as weH as concerning severa,l environmental parameters at the time of ice formation. Air arnount, air composition, and the size and form of bubbles may change with time. Possible processes responsible for such changes are discussed. In very cold ice air content and air composition remain almost unchanged. Samples of ancient atmospheric air are therefore very weH preserved in cold ice. In temperate ice changes of the air amount and air composition depend on the intergranular water fiow through the glacier. This waterfiow can be estimated by measuring air amount and air composition in ice sampIes.
Resumo:
Based on field investigations in northern Russia and interpretation of offshore seismic data, we have made a preliminary reconstruction of the maximum ice-sheet extent in the Barents and Kara Sea region during the Early/Middle Weichselian and the Late Weichselian. Our investigations indicate that the Barents and Kara ice sheets attained their maximum Weichselian positions in northern Russia prior to 50 000 yr BP, whereas the northeastern flank of the Scandinavian Ice Sheet advanced to a maximum position shortly after 17000 calendar years ago. During the Late Weichselian (25 000-10000 yr BP), much of the Russian Arctic remained ice-free. According to our reconstruction, the extent of the ice sheets in the Barents and Kara Sea region during the Late Weichselian glacial maximum was less than half that of the maximum model which, up to now, has been widely used as a boundary condition for testing and refining General Circulation Models (GCMs). Preliminary numerical-modelling experiments predict Late Weichselian ice sheets which are larger than the ice extent implied for the Kara Sea region from dated geological evidence, suggesting very low precipitation.