696 resultados para 177-1093D
Resumo:
Seven Ocean Drilling Program (ODP) sites recovered during ODP Leg 177 in the Atlantic sector of the Southern Ocean were analyzed to study the Pleistocene calcareous nannofossil record. Calcareous nannofossil events previously described from intermediate and low latitudes were identified and calibrated with available geomagnetic and stable isotope stratigraphic data. In general, Pleistocene southern high latitude calcareous nannofossil events show synchronicity with those observed from warm and temperate latitudes. The first occurrence (FO) of Emiliania huxleyi and the last occurrence (LO) of Pseudoemiliania lacunosa are observed in marine isotope stages (MIS) 8 and 12, respectively. A reversal in abundance between Gephyrocapsa muellerae and E. huxleyi is observed at MIS 5. MIS 6 is characterized by an increase in G. muellerae and MIS 7 features a dramatic decrease in the proportion of Gephyrocapsa caribbeanica. This latter species began to increase its proportions from MIS 14 to 13. The LO of Reticulofenestra asanoi is observed within subchron C1r.1r and the FO of R. asanoi occurs at the top of C1r.2r. A reentry of medium-sized Gephyrocapsa can be identified in some cores during subchron C1r.1n. The LO of large morphotypes of Gephyrocapsa is well correlated through the studied area, and occurs during the middle-low part of subchron C1r.2r,synchronous with other oceanic regions. The FO of Calcidiscus macintyrei and FO of medium-sized Gephyrocapsa occur in the studied area close to 1.6 Ma.
Resumo:
Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34-29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31-32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites. The composition of the calcareous nannofossil assemblage permits identification of three intervals (I-III). Intervals I and III, correlated to MIS 34-32 and MIS 30-29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian-Atlantic ocean exchange.
Resumo:
Age estimates for the opening of Drake Passage range from 49 to 17 million years ago (Ma), complicating interpretations of the relationship between ocean circulation and global cooling. Secular variations of neodymium isotope ratios at Agulhas Ridge (Southern Ocean, Atlantic sector) suggest an influx of shallow Pacific seawater approximately 41 Ma. The timing of this connection and the subsequent deepening of the passage coincide with increased biological productivity and abrupt climate reversals. Circulation/productivity linkages are proposed as a mechanism for declining atmospheric carbon dioxide. These results also indicate that Drake Passage opened before the Tasmanian Gateway, implying the late Eocene establishment of a complete circum-Antarctic pathway.
Resumo:
During ODP Leg 177, a Miocene to Pliocene calcareous nannofossil record was recovered at Sites 1088 and 1090. Site 1088, located at 41°8'S, shows a continuous middle-upper Miocene to Pliocene carbonate sequence that was deposited at relatively high sedimentation rates (Shipboard Scientific Party, 1999a, doi:10.2973/odp.proc.ir.177.103.1999). Moreover, Site 1088 proved suitable for calcareous nannofossil analysis as a means to improve the biostratigraphy at this southern latitude. Site 1090 was drilled at 42°54'S; a tephra layer marks a significant disconformity at the Miocene/Pliocene boundary of this sequence (Shipboard Scientific Party, 1999b, doi:10.2973/odp.proc.ir.177.105.1999). Although nannofossil assemblages are poorly preserved at this site (Shipboard Scientific Party, 1999b), they may help in determining the age of the disconformity and its paleoceanographic significance.