873 resultados para 175-1078A


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To test whether the radiation of the extremely rich Cape flora is correlated with marine-driven climate change. Location Middle to Late Miocene in the south-east Atlantic and the Benguela Upwelling System (BUS) off the west coast of South Africa. Methods We studied the palynology of the thoroughly dated Middle to Late Miocene sediments of Ocean Drilling Program (ODP) Site 1085 retrieved from the Atlantic off the mouth of the Orange River. Both marine upwelling and terrestrial input are recorded at this site, which allows a direct correlation between changes in the terrestrial flora and the marine BUS in the south-east Atlantic. Results Pollen types from plants of tropical affinity disappeared, and those from the Cape flora gradually increased, between 10 and 6 Ma. Our data corroborate the inferred dating of the diversification in Aizoaceae c. 8 Ma. Main conclusions Inferred vegetation changes for the Late Miocene south-western African coast are the disappearance of Podocarpus-dominated Afromontane forests, and a change in the vegetation of the coastal plain from tropical grassland and thicket to semi-arid succulent vegetation. These changes are indicative of an increased summer drought, and are in step with the development of the southern BUS. They pre-date the Pliocene uplift of the East African escarpment, suggesting that this did not play a role in stimulating vegetation change. Some Fynbos elements were present throughout the recorded period (from 11 Ma), suggesting that at least some elements of this vegetation were already in place during the onset of the BUS. This is consistent with a marine-driven climate change in south-western Africa triggering substantial radiation in the terrestrial flora, especially in the Aizoaceae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palynological records from the Congo fan reveal environmental change in equatorial Africa occurring 1.05 Ma ago, 100 k.y. before the mid-Pleistocene climatic shift at 0.9 Ma. Prior to 1.05 Ma, a glacial-interglacial rhythm is not obvious in the African vegetation variation. Afterwards, Podocarpus spread in the mountains of central Africa mainly during glacials and Congo River discharge decreased. The sequence of vegetation variation associated with the mid-Pleistocene glacials and interglacials differed from that observed during the late Pleistocene. Between 0.9 and 0.6 Ma, interglacials were characterized by warm dry conditions and glacials were characterized by cool humid conditions, while during the past 0.2 Ma glacials were cold and dry and interglacials warm and humid. Our data indicate that before the Northern Hemisphere ice caps dramatically increased in size (0.9-0.6 Ma), low-latitude climate forcing and response in the tropics played an important role in the initiation of 100 k.y. ice-age cycles. During the mid to late Pleistocene, however, the climate conditions in the tropics were increasingly influenced by the glacial-interglacial variations of continental ice sheets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful application of the alkenone palaeothermometer, the UK'37 index, relies upon the assumption that fossil alkenone synthesisers responded to growth-temperature changes in a similar manner to the modern producers, chiefly the coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. We compare coccolith and UK'37 data from ODP Site 1087 in the south-east Atlantic between 1500 and 500 ka, and show that evolutionary events and changes in species dominance within the coccolithophore populations had little impact on the UK'37 record. The relative abundances of the C37 and C38 alkenones also closely resembled those found in modern populations, and suggest a similar temperature sensitivity of UK'37 during the early and mid-Pleistocene to that found at present. These results support the application of the UK'37 index to reconstruct sea-surface temperatures (SSTs) throughout the Quaternary. The UK'37 record at ODP Site 1087 contains an SST signal that documents the emergence of the 100-kyr cycles that characterise the late Quaternary ice volume records. This is preceded by significant cooling at ODP Site 1087, marked by a negative shift in SSTs and a positive shift in the planktonic delta18O some 250-kyr earlier, at ca 1150-1000 ka. This results in a permanent fall in average SSTs of around 1.5 °C. The predicted increase in aridity onshore as a result of this cooling can be identified in a number of published records from southern Africa, and may have played a role in some important evolutionary events of the mid-Pleistocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upwelling along the western coast of Africa south of the equator may be partitioned into three major areas, each having its own dynamics and history: (1) the eastern equatorial region, comprising the Congo Fan and the area of Mid-Angola; (2) the Namibia upwelling system, extending from the Walvis Ridge to Lüderitz; and (3) the Cape Province region, where upwelling is subdued. The highest nutrient contents in thermocline waters are in the northern region, the lowest in the southern one. Wind effects are at a maximum near the southern end of the Namibia upwelling system, and maximum productivity occurs near Walvis Bay, where the product between upwelling rate and nutrient content of upwelled waters is at a maximum. In the Congo/Angola region, opal tends to follow organic carbon quite closely in the Quaternary record. However, organic carbon has a strong precessional component, while opal does not. Despite relatively low opal content, sediments off Angola show the same patterns as those off the Congo; thus, they are part of the same regime. The spectrum shows nonlinear interference patterns between high- and low-latitude forcing, presumably tied to thermocline fertility and wind. On Walvis Ridge, as in the Congo-Angola region, the organic matter record behaves normally; that is, supply is high during glacial periods. In contrast, interglacial periods are favorable for opal deposition. The pattern suggests reduction in silicate content of the thermocline during glacial periods. The reversed phase (opal abundant during interglacials) persists during the entire Pleistocene and can be demonstrated deep into the Pliocene, not just on Walvis Ridge but all the way to the Oranje River and off the Cape Province. From comparison with other regions, it appears that silicate is diminished in the global thermocline, on average, whenever winds become strong enough to substantially shorten the residence time of silicate in upper waters (Walvis Hypothesis, solving the Walvis Paradox of reversed phase in opal deposition). The central discovery during Leg 175 was the documentation of a late Pliocene opal maximum for the entire Namibia upwelling system (early Matuyama Diatom Maximum [MDM]). The maximum is centered on the period between the end of the Gauss Chron and the beginning of the Olduvai Chron. A rather sharp increase in both organic matter deposition and opal deposition occurs near 3 Ma in the middle of the Gauss Chron, in association with a series of major cooling steps. As concerns organic matter, high production persists at least to 1 Ma, when there are large changes in variability, heralding subsequent pulsed production periods. From 3 to 2 Ma, organic matter and opal deposition run more or less parallel, but after 2 Ma opal goes out of phase with organic matter. Apparently, this is the point when silicate becomes limiting to opal production. Thus, the MDM conundrum is solved by linking planetary cooling to increased mixing and upwelling (ramping up to the MDM) and a general removal of silicate from the upper ocean through excess precipitation over global supply (ramping down from the MDM). The hypothesis concerning the origin of the Namibia opal acme or MDM is fundamentally the same as the Walvis Hypothesis, stating that glacial conditions result in removal of silicate from the thermocline (and quite likely from the ocean as a whole, given enough time). The Namibia opal acme, and other opal maxima in the latest Neogene in other regions of the ocean, marks the interval when a cooling ocean selectively removes the abundant silicate inherited from a warm ocean. When the excess silicate is removed, the process ceases. According to the data gathered during Leg 175, major upwelling started in the late part of the late Miocene. Presumably, this process contributed to the drawing down of carbon dioxide from the atmosphere, helping to prepare the way for Northern Hemisphere glaciation.