468 resultados para 114-698A


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a near-continuous, stable isotopic record for the Pliocene-Pleistocene (4.8 to 0.8 Ma) from Ocean Drilling Program Site 704 in the sub-Antarctic South Atlantic (47°S, 7°E). During the early to middle Pliocene (4.8 to 3.2 Ma), variation in delta18O was less than ~0.5 per mil, and absolute values were generally less than those of the Holocene. These results indicate some warming and minor deglaciation of Antarctica during intervals of the Pliocene but are inconsistent with scenarios calling for major warming and deglaciation of the Antarctic ice sheet. The climate System operated within relatively narrow limits prior to ~3.2 Ma, and the Antarctic cryosphere probably did not fluctuate on a large scale until the late Pliocene. Benthic oxygen isotopic values exceeded 3 per mil for the first time at 3.16 Ma. The amplitude and mean of the delta18O signal increased at 2.7 Ma, suggesting a shift in climate mode during the latest Gauss. The greatest delta18O values of the Gaus anti Gilbert chrons occurred at ~2.6 Ma, just below a hiatus that removed the interval from ~2.6 to 2.3 Ma in Site 704. These results agree with those from Subantarctic Site 514, which suggest that the latest Gauss (2.68 to 2.47 Ma) was the time of greatest change in Neogene climate in the northern Antarctic and Subanthtic regions. During this period, surface water cooled as the Polar Front Zone (PFZ) migrated north and perennial sea ice Cover expanded into the Subantarctic region. Antarctic ice volume increased and the ventilation rate of Southern Ocean deep water decreased during glacial events after 2.7 Ma. We suggest that these changes in the Southern Ocean were related to a gradual lowering of sea level and a reduction in the flux of North Atlantic Deep Water (NADW) with the Initiation of ice growth in the northern hemisphere. The early Matuyama Chron (~ 2.3 to 1.7 Ma) was marked by relatively warm climates in the Southern Ocean except for strong glacial events associated with isotopic stages 82 (2.027 Ma), 78 (1.941 Ma), and 70 (1.782 Ma). At 1.67 Ma (stage 65/64 transition), surface waters cooled as the PFZ migrated equatorward and oscillated about a far northerly position for a prolonged interval between 1.67 and 1.5 Ma (stages 65 to 57). Beginning at ~1.42 Ma (stage 52), all parameters (delta18O, delta13C, %opal, %CaCO3) in Hole 704 become highly correlated with each other and display a very strong 41-kyr cyclicity. This increase in the importance of the 41-kyr cycle is attributed to an increase in the amplitude of the Earth's obliquity cycle that was likely reinforced by increased glacial suppression of NADW, which may explain the tightly coupled response that developed between the Southern Ocean and the North Atlantic beginning at ~1.42 Ma (stage 52).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the stable isotopic and carbonate stratigraphy of ODP Hole 704A to reconstruct the paleoceanographic evolution of the eastern subantarctic sector of the South Atlantic Ocean. Site 704 is well positioned with respect to latitude (46°52.8'S, 7°25.3'E) and bathymetry (2532 m) to monitor past migrations in the position of Polar Front Zone (PFZ) and changes in deep-water circulation during the late Pliocene-Pleistocene. Several important changes occurred in proxy paleoceanographic indicators across the Gauss/Matuyama boundary at 2.47 Ma: (1) accumulation rates of biogenic sedimentary components increased by an order of magnitude (Froelich et al., this volume); (2) planktonic d1 8O values increased by an average of 0.5 per mil; (3) the amplitude of the benthic d18O signal increased; (4) the accumulation rate of ice-rafted detritus increased several fold (Warnke and Allen, this volume); and (5) carbon isotopic ratios of benthic foraminifers decreased by 0.5 per mil, as did the d13C of the fine-fraction carbonate by 1.5 per mil (Mead et al., 1991, doi:10.2973/odp.proc.sr.114.152.1991), but no change occurred in planktonic foraminiferal d13C values. Most of these changes are consistent with more frequent expansions and contractions of the PFZ over Site 704 after 2.47 Ma, bringing cold, nutrient-rich waters to 47°S that stimulated both carbonate and siliceous productivity. The synchronous increase in d18O values and ice-rafted detritus accumulation in Hole 704A indicates that the 2.4 Ma paleoceanographic event included ice volume growth on both Antarctica and Northern Hemisphere continents. The decrease in benthic d13C values indicates that the ventilation rate of Southern Ocean deep water decreased and the nutrient content increased during glacial events after 2.5 Ma. At the Gauss/Matuyama boundary, benthic d13C values of the Southern Ocean shifted toward those of the Pacific end member, indicating a decrease in the relative mixing ratio of Northern Component Water and Circumpolar Deep Water. During the early Matuyama (~2.3 to 1.7 Ma), the PFZ generally occupied a southerly position with respect to Site 704 and carbonate productivity prevailed. Exceptions to these general conditions occurred during strong glacial events of the early Matuyama (e.g., isotopic stages 82, 78, 74, and 70), when the PFZ migrated to the north and opal sedimentation predominated at Site 704. At 1.7 Ma, the PFZ migrated toward the equator and occupied a more northerly position for a prolonged interval between ~1.7 and 1.5 Ma. Beginning at ~1.5-1.4 Ma, surface and bottom water parameters (d18O, d13C, %CaCO3, and %opal) in the subantarctic South Atlantic became highly correlated such that glacial events (d18O maxima) corresponded to d13C and carbonate minima and opal maxima. This pattern is typical of the correlation found during the latest Pleistocene in the Southern Ocean (Charles and Fairbanks, in press). This event coincided with increased suppression of Northern Component Water during glacial events after 1.5 Ma (Raymo et al., 1990, doi:10.1016/0012-821X(90)90051-X), which may have influenced the climatology of the Southern Hemisphere by altering the flux of heat and salt to the Southern Ocean).