698 resultados para 113-690B


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oligocene to Quaternary sediments were recovered from the Antarctic continental margin in the eastern Weddell Sea during ODP Leg 113 and Polarstern expedition ANT-VI. Clay mineral composition and grain size distribution patterns are useful for distinguishing sediments that have been transported by ocean currents from those that were ice-rafted. This, in turn, has assisted in providing insights about the changing late Paleogene to Neogene sedimentary environment as the cryosphere developed in Antarctica. During the middle Oligocene, increasing glacial conditions on the continent are indicated by the presence of glauconite sands, that are interpreted to have formed on the shelf and then transported down the continental slope by advancing glaciers or as a result of sea-level lowering. The dominance of illite and a relatively high content of chlorite suggest predominantly physical weathering conditions on the continent. The high content of biogenic opal from the late Miocene to the late Pliocene resulted from increased upwelling processes at the continental margin due to increased wind strength related to global cooling. Partial melting of the ice-sheet occurred during an early Pliocene climate optimum as is shown by an increasing supply of predominantly current-derived sediment with a low mean grain size and peak values of smectite. Primary productivity decreased at ~ 3 Ma due to the development of a permanent sea-ice cover close to the continent. Late Pleistocene sediments are characterized by planktonic foraminifers and biogenic opal, concentrated in distinct horizons reflecting climatic cycles. Isotopic analysis of AT. pachyderma produced a stratigraphy which resulted in a calculated sedimentation rate of 1 cm/k.y. during the Pleistocene. Primary productivity was highest during the last three interglacial maxima and decreased during glacial episodes as a result of increasing sea-ice coverage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An almost continuous Upper Cretaceous through Pleistocene biogenic sediment section was recovered from two sites on Maud Rise, a volcanic edifice in the Weddell Sea, off eastern Antarctica. Calcium carbonate values were determined for 1100 closely spaced samples using a Coulometrics CO2 Coulometer. Following a very brief decrease in the percentage of calcium carbonate immediately above the Cretaceous/Tertiary boundary, values remain high (~70%-80%), throughout most of the Paleocene, with variations primarily attributed to changes in the relative abundance of terrigenous and biogenic components. A small general decrease in calcium carbonate is observed from the upper Paleocene to lower middle Eocene. Eocene values continue to show small to moderate fluctuations. These fluctuations become more pronounced in the Oligocene as biosiliceous and carbonate sediments are mixed and interlayered. A distinct decrease in the calcium carbonate component is observed in the upper Oligocene through lower middle Miocene. Calcium carbonate becomes dominant again in the middle and lower upper Miocene, followed by almost exclusive biosiliceous sedimentation until the Pleistocene, where foraminifer-dominated calcareous ooze was recovered. Interpretation of this data will be carried out when a more finalized chronostratigraphy for the sequence has been produced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution stable carbon isotope records for upper Paleocene - lower Eocene sections at Ocean Drilling Program Sites 1051 and 690 and Deep Sea Drilling Project Sites 550 and 577 show numerous rapid (40 - 60 kyr duration) negative excursions of up to 1 per mill. We demonstrate that these transient decreases are the expected result of nonlinear insolation forcing of the carbon cycle in the context of a long carbon residence time. The transients occur at maxima in Earth's orbital eccentricity, which result in high-amplitude variations in insolation due to forcing by climatic precession. The construction of accurate orbital chronologies for geologic sections older than ~ 35 Ma relies on identifying a high-fidelity recorder of variations in Earth's orbital eccentricity. We use the carbon isotope records as such a recorder, establishing a robust orbitally tuned chronology for latest Paleocene-earliest Eocene events. Moreover, the transient decreases provide a means of precise correlation among the four sites that is independent of magnetostratigraphic and biostratigraphic data at the <10^5-year scale. While the eccentricity-controlled transient decreases bear some resemblance to the much larger-amplitude carbon isotope excursion (CIE) that marks the Paleocene/Eocene boundary, the latter event is found to occur near a minimum in the ~400-kyr eccentricity cycle. Thus the CIE occurred during a time of minimal variability in insolation, the dominant mechanism for forcing climate change on 104-year scales. We argue that this is inconsistent with mechanisms that rely on a threshold climate event to trigger the Paleocene/Eocene thermal maximum since any threshold would more likely be crossed during a period of high-amplitude climate variations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the Paleocene-Eocene Thermal Maximum (PETM), rapid release of isotopically light C to the ocean-atmosphere system elevated the greenhouse effect and warmed temperatures by 5-7 °C for 105 yr. The response of the planktic ecosystems and productivity to the dramatic climate changes of the PETM may represent a significant feedback to the carbon cycle changes, but has been difficult to document. We examine Sr/Ca ratios in calcareous nannofossils in sediments spanning the PETM in three open ocean sites as a new approach to examine productivity and ecological shifts in calcifying plankton. The large heterogeneity in Sr/Ca among different nannofossil genera indicates that nannofossil Sr/Ca reflects primary productivity-driven geochemical signals and not diagenetic overprinting. Elevated Sr/Ca ratios in several genera and constant ratios in other genera suggest increased overall productivity in the Atlantic sector of the Southern Ocean during the PETM. Dominant nannofossil genera in tropical Atlantic and Pacific sites show Sr/Ca variations during the PETM which are comparable to background variability prior to the PETM. Despite acidification of the ocean there was not a productivity crisis among calcifying phytoplankton. We use the Pandora ocean box model to explore possible mechanisms for PETM productivity change. If independent proxy evidence for more stratified conditions in the Southern Ocean during the PETM is robust, then maintenance of stable or increased productivity there likely reflects increased nutrient inventories of the ocean. Increased nutrient inventories could have resulted from climatically enhanced weathering and would have important implications for burial rates of organic carbon and stabilization of climate and the carbon cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From January to March 1987, heat flow measurements were tried at four sites (Sites 689, 690, 695, and 696) during ODP Leg 113, in the Weddell Sea, Antarctica. At Site 690 (Maud Rise), a convex upward shaped temperature vs. depth profile was observed. This profile cannot be explained by steady-state conduction through solid materials only. We conclude that the minimum heat flow value at Site 690 is 45 mW/m2. A prominent bottom simulating reflector (BSR) was observed at 600 mbsf at Site 695. However, the observed temperature is too high to explain the BSR as a gas hydrate. The origin of the BSR remains unknown, although it is probably of biogenic origin as observed in the Bering Sea during DSDP Leg 19. After correcting for the effects of sedimentation, heat flow values at Sites 695 and 696 are 69 and 63 mW/m2, respectively. Furthermore, we compiled heat flow data south of 50°S. In the Weddell Sea region, the eastern part shows relatively low heat flow in comparison with the western part, with the boundary between them at about 15°W longitude.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon isotope measurements were made on bulk sediments from the well preserved calcareous sequences recovered at ODP Sites 689 and 690 on the Maud Rise, Weddell Sea, Antarctica. The very positive delta13C values that characterize the late Paleocene and the rapid trend toward lighter values in the early Eocene established in other sites are clearly recorded here and may be of value for long-distance stratigraphic correlation. However, values in the late Eocene are significantly more positive than have been reported from other areas. The general pattern of the records from Sites 689 and 690 is sufficiently unlike those previously reported from lower latitudes that we suggest that carbon isotope data should be used only with considerable caution for correlating sequences from such high latitudes with lower latitude records.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxygen and carbon isotopic composition has been measured for numerous Paleogene planktonic foraminifer species from Maud Rise, Weddell Sea (ODP Sites 689 and 690), the first such results from the Antarctic. The results provide information about large-scale changes in the evolution of temperatures, seasonally, and structure of the upper water column prior to the development of a significant Antarctic cryosphere. The early Paleocene was marked by cooler surface-water conditions compared to the Cretaceous and possibly a less well developed thermocline. The late Paleocene and early Eocene saw the expansion of the thermocline as Antarctic surface waters became warm-temperate to subtropical. The late Paleocene to early Eocene thermal maximum was punctuated by two brief excursions during which time the entire Antarctic water column warmed and the meridional temperature gradient was reduced. The first of these excursions occurred at the Paleocene/Eocene boundary, in association with a major extinction in deep sea benthic foraminifers. The second excursion occurred within the early Eocene at ~54.0 Ma. These excursions are of global importance and represent the warmest intervals of the entire Cenozoic. The excursions were associated with fundamental changes in deep-water circulation and global heat transport. The thermal maximum of the early Eocene ended with the initiation of a long-term cooling trend at 52.0 Ma. This cooling trend was associated with reduced seasonality, and diminished structure and/or duration of the seasonal thermocline. The cooling trend was punctuated by three major cooling steps at 43.0, 40.0, and -36.0 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cores from Sites 689 and 690 of Ocean Drilling Program Leg 113 provide the most continuous Paleocene and Eocene sequence yet recovered by deep sea drilling in the high latitudes of the Southern Ocean. The nannofossil-foraminifer oozes and chalks recovered from Maud Rise at 65°S in the Weddell Sea provide a unique opportunity for biostratigraphic study of extremely high southern latitude carbonate sediments. The presence of warm water index fossils such as the discoasters and species of the Tribrachiatus plexus facilitate the application of commonly used low latitude calcareous nannofossil biostratigraphic zonation schemes for the upper Paleocene and lower Eocene intervals. In the more complete section at Site 690, Okada and Bukry Zones CP1 through CP10 can be identified for the most part with the possible exception of Zone CP3. Several hiatuses are present in the sequence at Site 689 with the most notable being at the Cretaceous/Tertiary and Paleocene/Eocene boundaries. Though not extremely diverse, the assemblage of discoasters in the upper Paleocene and lower Eocene calcareous oozes is indicative of warm, relatively equable climates during that interval. A peak in discoaster diversity in uppermost Paleocene sediments (Zone CP8) corresponds to a negative shift in 5180 values. Associated coccolith assemblages are quite characteristic of high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Climatic cooling is indicated for middle Eocene sediments by assemblages that contain very abundant Reticulofenestra, lack common discoasters and sphenoliths and are much less diverse overall. Two new taxa are described, Biscutum? neocoronum n. sp. and Amithalithina sigmundii n. gen., n. sp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A continuous age model for the brief climate excursion at the Paleocene-Eocene boundary has been constructed by assuming a constant flux of extraterrestrial 3He (3He[ET]) to the seafloor. 3He[ET] measurements from ODP Site 690 provide quantitative evidence for the rapid onset (

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well preserved middle Miocene to Recent radiolarians were recovered from several sites in the Weddell Sea by ODP (Ocean Drilling Program) Leg 113. Low rates of sedimentation, hiatuses, and poor core recovery in some sites are offset by the nearly complete recovery of a late middle Miocene to late Pliocene section at Site 689 on the Maud Rise. Although a hiatus within the latest Miocene exists, this site still provides an excellent reference section for Antarctic biostratigraphy. A detailed radiolarian stratigraphy for the middle Miocene to late Pliocene of Site 689 is given, together with supplemental stratigraphic data from ODP Leg 113 Sites 690, 693, 695, 696, and 697. A refined Antarctic zonation for the middle Miocene to Recent is presented, based on the previous zonations of Hays (1965), Chen (1975), Weaver (1976b), and Keany (1979). The late Miocene radiolarian Acrosphaera australis n. sp. is described and used to define the A. australis zone, ranging from the first appearance of the nominate species to the last appearance of Cycladophora spongothorax (Chen) Lombari and Lazarus 1988. The species Botryopera deflandrei Petrushevskaya 1975 is transferred to Antarctissa deflandrei (Petrushevskaya) n. comb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Benthic oxygen and carbon isotopic results from a depth transect on Maud Rise, Antarctica, provide the first evidence for Warm Saline Deep Water (WSDW) in the Paleogene oceans. Distinct reversals occur in the oxygen isotopic gradient between the shallower Hole 689B (Eocene depth ~1400 m; present-day depth 2080 m) and the deeper Hole 690B (Eocene depth ~2250 m; present-day depth 2914 m). The isotopic reversals, well developed by at least 46 Ma (middle middle Eocene), existed for much of the remaining Paleogene. We do not consider these reversals to be artifacts of differential diagenesis between the two sites or to have resulted from other potentially complicating factors. This being so, the results show that deep waters at Hole 690B were significantly warmer than deep waters at the shallower Hole 689B. A progressive decrease and eventual reversal in benthic to planktonic delta18O gradients in Hole 690B, demonstrate that the deeper waters became warmer relative to Antarctic surface waters during the Eocene. The warmer deep waters of the Paleogene are inferred to have been produced at middle to low latitudes, probably in the Tethyan region which contained extensive shallow-water platforms, ideal sites for the formation of high salinity water through evaporative processes. The ocean during the Eocene, and perhaps the Paleocene, is inferred to have been two-layered, consisting of warm, saline deep waters formed at low latitudes and overlain by cooler waters formed at high latitudes. This thermospheric ocean, dominated by halothermal circulation we name Proteus. The Neogene and modern psychrospheric ocean Oceanus is dominated by thermohaline circulation of deep waters largely formed at high latitudes. An intermediate condition existed during the Oligocene, with a three-layered ocean that consisted of cold, dense deep waters formed in the Antarctic (Proto-AABW), overlain by warm, saline deep waters from low latitudes, and in turn overlain by cool waters formed in the polar regions. This we name Proto-oceanus which combined both halothermal and thermohaline processes. The sequence of high latitude, major, climatic change inferred from the oxygen isotopic records is as follows: generally cooler earlier Paleocene; warming during the late Paleocene; climax of Cenozoic warmth during the early Eocene and continuing into the early middle Eocene; cooling mainly in a series of steps during the remainder of the Paleogene. Superimposed upon this Paleogene pattern, the Paleocene/Eocene boundary is marked by a brief but distinct warming that involved deep to surface waters and a reduction in surface to deep carbon and oxygen isotopic gradients. This event coincided with major extinctions among the deep-sea benthic foraminifers as shown by Thomas (1990 doi:10.2973/odp.proc.sr.113.123.1990). Salinity has played a major role in deep ocean circulation, and thus paleotemperatures cannot be inferred directly from the oxygen isotopic composition of Paleogene benthic foraminifers without first accounting for the salinity effect.