580 resultados para 108-660
Resumo:
Knowledge of past atmospheric pCO2 is important for evaluating the role of greenhouse gases in climate forcing. Ice core records show the tight correlation between climate change and pCO2, but records are limited to the past ~900 kyr. We present surface ocean pH and pCO2 data, reconstructed from boron isotopes in planktonic foraminifera over two full glacial cycles (0-140 and 300-420 kyr). The data co-vary strongly with the Vostok pCO2-record and demonstrate that the coupling between surface ocean chemistry and the atmosphere is recorded in marine archives, allowing for quantitative estimation of atmospheric pCO2 beyond the reach of ice cores.
Resumo:
High- and low-latitude forcing of terrestrial African paleoclimate variability is demonstrated using 900 ka eolian and biogenic component records from Ocean Drilling Program site 663 in the eastern equatorial Atlantic. Terrigenous (eolian dust) and phytolith (savannah grass cuticle) accumulation rate records vary predominantly at 100 and 41 kyr periodicities and spectral phase estimates implicate high-latitude forcing. The abundance of freshwater diatoms (Melosira) transported from dry African lake beds varies coherently at 23-19 kyr orbital periodicities and at a phasing which implicates low-latitude precessional monsoon forcing. Modeling studies demonstrate that African climate is sensitive to both high- and low-latitude boundary conditions. African monsoon intensity is modulated by direct insolation variations due to orbital precession, whereas remote high-latitude forcing can be related to cool North Atlantic sea surface temperatures (SSTs) which promote African aridity and enhance dust-transporting wind speeds. The site 663 terrigenous and phytolith records covary with North Atlantic SST variability at 41 °N (site 607). We suggest that Pleistocene African climate has responded to both high-latitude North Atlantic SST variability as well as low-latitude precessional monsoon forcing; the high-latitude influence dominates the sedimentary record. Prior to circa 2.4 Ma, terrigenous variations occurred primarily at precessional periodicities (23-19 kyr), indicating that African climate was largely controlled by low-latitude insolation variations prior to the onset of high-amplitude glacial-interglacial climate change.
Resumo:
Results and discussion cover pigment analyses of 36 sediment samples recovered by Deep Sea Drilling Project Leg 64, and six samples from the Leg 64 site-survey cruise in the Guaymas Basin (Scripps Institution of Oceanography, Leg 3). Pigments investigated were tetrapyrroles, tetraterpenoids, and the PAH compound perylene. Traces of mixed nickel and copper ETIO-porphyrins were ubiquitous in all sediment samples, except for the very surface (i.e., <2 m sub-bottom), and their presence is taken as an indication of minor influxes of previously oxidized allochthonous (terrestrial) organic matter. Phorbides and chlorins isolated from Site 479 sediment samples (i.e., the oxygen-minimum locale, northeast of the Guaymas Basin) well represent the reductive diagenesis ("Treibs Scheme"; see Baker and Palmer, 1978; Treibs, 1936) of chlorophyll derivatives. Three forms of pheophytin-a, plus a variety of phorbides, were found to give rise to freebase porphyrins, nickel phylloerythrin, and nickel porphyrins, with increasing depth of burial (increasing temperature). Sediments from Sites 481, 10G, and 18G yielded chlorophyll derivatives characteristic of early oxidative alterations. Included among these pigments are allomerized pheophytin-a, purpurin-18, and chlorin-p6. The high thermal gradient imposed upon the late Quaternary sediments of Site 477 greatly accelerated chlorophyll diagenesis in the adjacent overlying sediments, that is, the production of large quantities of free-base desoxophylloerythroetioporphyrin (DPEP) occurred in a section (477-7-5) presently only 49.8 meters sub-bottom. Present depth and age of these sediments are such that only chlorins and phorbides would be expected. Carotenoid (i.e., tetraterpenoids) concentrations were found to decrease rapidly with increasing sub-bottom depth. Less deeply buried sediments (e.g., 0-30 m) yielded mixtures of carotenes and oxygen-substituted carotenoids. Oxygencontaining (oxy-, oxo-, epoxy-) carotenoids were found to be lost preferentially with increased depth of burial. Early carotenoid diagenesis is suggested as involving interacting reductions and dehydrations whereby dehydro-, didehydro-, and retro-carotenes are generated. Destruction of carotenoids as pigments may involve oxidative cleavage of the isoprenoid chain through epoxy intermediates, akin to changes in the senescent cells of plants. Perylene was found to be a common component of the extractable organic matter from all sediments investigated. The generation of alkyl perylenes was found to parallel increases in the existing thermal regime at all sites. Igneous sills and sill complexes within the sediment profile of Site 481 altered (i.e., scrambled) the otherwise straightforward thermally induced alkylation of perylene. The degree of perylene alkylation is proposed as an indicator of geothermal stress for non-contemporaneous marine sediments.