969 resultados para Pore Water Pressure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ) located at the Makran convergent continental margin. Push cores were obtained from seeps within and below the core-OMZ with a remotely operated vehicle. Extracted sediment pore water was analyzed for sulfide and sulfate concentrations. Depending on oxygen availability in the bottom water, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats, which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was retained within the sediment. Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr**-1 to <1 cm yr**-1 and the sulfate/methane transition (SMT) deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMT did not significantly differ (6.6-9.3 mol m**-2 yr**-1). Depth-integrated rates of bioirrigation increased from 120 cm yr**-1 in the central habitat, characterized by microbial mats and sparse macrofauna, to 297 cm yr**-1 in the habitat of large and few small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats below the core-OMZ efficiently bioirrigate and thus transport sulfate down into the upper 10 to 15 cm of the sediment. In this way the animals deal with the lower upward flux of methane in outer habitats by stimulating rates of anaerobic oxidation of methane (AOM) with sulfate high enough to provide hydrogen sulfide for chemosynthesis. Through bioirrigation, macrofauna engineer their geochemical environment and fuel upward sulfide flux via AOM. Furthermore, due to the introduction of oxygenated bottom water into the sediment via bioirrigation, the depth of the sulfide sink gradually deepens towards outer habitats. We therefore suggest that - in addition to the oxygen levels in the water column, which determine whether macrofaunal communities can develop or not - it is the depth of the SMT and thus of sulfide production that determines which chemosynthetic communities are able to exploit the sulfide at depth. We hypothesize that large vesicomyid clams, by efficiently expanding the sulfate zone down into the sediment, could cut off smaller or less mobile organisms, as e.g. small clams and sulfur bacteria, from the sulfide source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pore water extracted from sediments penetrated on Leg 164 of the Ocean Drilling Program at the Blake Ridge West. Atlantic were analyzed for acetate, total dissolved organic carbon, bromide and iodide, to help explain the occurrence of subsurface maxima in bacteria biomass and activity reported previously from a nearby site. The high concentrations of these organic matter decomposition by-products in the pore waters from sediments with moderate concentrations of sedimentary organic matter can convincingly be modelled as resulting from upward migration of pore water. The amount of acetate and unidentified DOC transported by the pore water contribute significantly to the pool of metabolizable carbon, and may be the most important substances in energetic terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured the 3He/4He and 20Ne/4He ratios of gases dissolved in the pore water in sediments at two sites in the Nankai Trough (Site 583) and the Japan Trench (Site 584). The 3He/4He and 20Ne/4He ratios vary from 0.215 * 10**-6 to 1.23 * 10**-6 and from 50 * 10**-3 to 2700 * 10**-3, respectively. These values can be explained by mixing two components, one from the atmosphere and one with a 3He/4He ratio of (0.2 to 0.3) * 10**-6. The latter component may be derived from the ocean crust near the subduction zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 996 is located above the Blake Diapir where numerous indications of vertical fluid migration and the presence of hydrate existed prior to Ocean Drilling Program (ODP) Leg 164. Direct sampling of hydrates and visual observations of hydrate-filled veins that could be traced 30-40 cm along cores suggest a connection between fluid migration and hydrate formation. The composition of pore water squeezed from sediment cores showed large variations due to melting of hydrate during core recovery and influence of saline water from the evaporitic diapir below. Analysis of water released during hydrate decomposition experiments showed that the recovered hydrates contained significant amounts of pore water. Solutions of the transport equations for deuterium (d2H) and chloride (Cl-) were used to determine maximum (d2H) and minimum (Cl-) in situ concentrations of these species. Minimum in situ concentrations of hydrate were estimated by combining these results with Cl- and d2H values measured on hydrate meltwaters and pore waters obtained by squeezing of sediments, by the means of a method based on analysis of distances in the two-dimensional Cl- d2H space. The computed Cl- and d2H distribution indicates that the minimum hydrate amount solutions are representative of the actual hydrate amount. The highest and mean hydrate concentrations estimates from our model are 31% and 10% of the pore space, respectively. These concentrations agree well with visual core observations, supporting the validity of the model assumptions. The minimum in situ Cl- concentrations were used to constrain the rates of upward fluid migration. Simulation of all available data gave a mean flow rate of 0.35 m/k.y. (range: 0.125-0.5 m/k.y.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Will be submitted by the author