980 resultados para Colorado-Big Thompson Project (U.S.)
Resumo:
Basalts from some holes of the Deep Sea Drilling Project contain secondary K-feldspar which forms pseudomorphs after calcic (>76% An) Plagioclase cores, whereas Plagioclase of rims and microlites (68-74% An) remains unaltered. In basalts of Hole 504B two such grains with relics of Plagioclase in the central parts of phenocysts were recovered. The composition of the Plagioclase rims and of non-replaced phenocrysts is An79-81; the composition of relics is An83. The An and Ab contents of the K-feldspar is higher than in K-feldspar from altered basalt in Hole 418A in the Atlantic Ocean near the Bermuda Rise. Replacement of plagioclases by K-feldspar evidently is caused by oxygen-rich nearbottom sea water penetrating into basalts. The temperature interval of K-feldspathization is probably in the range 30 to 80°C, more-calcic Plagioclase being replaced by K-feldspar at higher temperatures.
Resumo:
The volcanism of Central America, according to current theory (Pichler and Weyl, 1973; Stoiber and Carr, 1974; Hey, 1977), is related to the subduction of the Cocos Plate under the North American lithospheric plate and the melting of ocean crust material in the subduction zone (Green and Ringwood, 1968; Dickinson, 1970, Fitton, 1971). Since Cocos Plate subduction occurs at the rate of more than 7 cm/y. (Hey et al., 1977), basalts underlying upper Miocene sediments of the Middle America Trench outer slope, penetrated in Hole 487 (Fig. 1) during Leg 66 (Moore et al., 1979), should have formed far from their present position if current theory is accurate. Present manifestations of basaltic magmatism in adjacent areas of the Pacific derive from the axial part of the East Pacific Rise, the Galapagos spreading center, and transform fracture zones. The question arises: Are there analogs of the Middle America Trench basalts among magmatic cock associated with these modern features, or do the trench basalts have some other origin?
Resumo:
At Site 493, DSDP Leg 66, dioritic basement was reached below lower Miocene (NN1 Zone, 22-24 Ma) terrigenous sediments. Petrographical, mineralogical (including microprobe analyses), and chemical features of the dioritic rocks reveal their magmatic affinity with the calc-alkaline series. Furthermore, their radiometric age (35.3 m.y.) links the basement to the Sierra Madre Occidental in Mexico and to mid-Tertiary volcanic arcs in Central America. The presence of Oligocene diorite 50 km from the trench axis confirms the truncation of the south Mexico margin, which we explain as the result of a 650 to 800 km left-lateral displacement of Central America relative to North America. Truncation must have occurred in the late Miocene, after the diorite intrusion and prior to the present subduction.
Resumo:
During Leg 67, the Middle-America Trench transect off Guatemala was drilled across the convergent margin of southern Mexico and Central America south of the Tehuantepec Ridge. The data of Leg 66, north of the Tehuantepec Ridge, and that of Leg 67 provided the opportunity to establish a continuous chronology of airborne volcanic ashes intercalated within the sediments (Aubouin et al., 1979; von Huene et al., 1980). Sites of both expeditions are favorably located for obtaining a good record of the explosive volcanicity of these areas, given the proximity of the volcanic sources and the position of the sites under the prevailing winds.