988 resultados para delta 18O, endogenic calcite
Resumo:
Five delta13C records from the deep ocean, extending back to 1.3 Ma, were examined in order to constrain changes in mean ocean carbon isotope composition and thermohaline circulation over the 41- to 100-ka climate transition. These data show that significant perturbations in mean ocean carbon chemistry were associated with the mid-Pleistocene climate transition. Notable features of the last 1.3 Myr are (1) a pronounced ~0.3? decrease in mean ocean delta13C between 0.9 and 1.0 Myr, followed by a return to pre-1.0 Ma values by 400 ka B.P., which we propose was due to the onetime addition of isotopically depleted terrestrial carbon to the ocean, possibly associated with an increase in global aridity (and decrease in the size of the biosphere) across the 41- to 100-ka transition; (2) no change in the Atlantic-Pacific (A-P) delta13C gradient over the last 1.3 Myr, suggesting no change in mean ocean nutrient content accompanied the addition of light carbon; and (3) stronger vertical nutrient fractionation in the North Atlantic in the middle Pleistocene between sites 607 and 552, suggesting weaker North Atlantic Deep Water formation at this time relative to the early and late Pleistocene. We also find evidence for a more pronounced deep recirculation gyre in the western North Atlantic basin in the early Brunhes, as evidenced by "aging" of deep northern basin water (site 607) relative to deep water in the equatorial Atlantic (site 664).
Resumo:
A new composite d18O record, generated from calcareous fine-fraction and bulk sediments from the Exmouth Plateau, details long-term Cretaceous climatic change at mid-latitudes in the Southern Hemisphere. Assessment of new and previously published d18O data indicates that a mid-Cretaceous global climatic optimum was achieved sometime between the time of the Cenomanian-Turonian boundary and the middle Turonian, when surface-ocean paleotemperatures were the highest of the past 115 m.y. Periods of cooling and warming that reversed the general patterns were superimposed on long-term Aptian-Turonian warming and Turonian-Maastrichtian cooling trends, respectively. Extrapolation of Southern Hemisphere paleotemperature trends to Maastrichtian paleotemperature data from a low-latitude Pacific guyot implies that maximum mid-Cretaceous low-latitude paleotemperatures could have been in excess of 33°C.
Resumo:
Bulk sediment chemistry from three Chilean continental margin Ocean Drilling Program sites constrains regional continental erosion over the past 30,000 years. Sediments from thirteen rivers that drain the (mostly igneous) Andes and the (mostly metamorphic) Coast Range, along with existing rock chemistry datasets, define terrestrial provenance for the continental margin sediments. Andean river sediments have high Mg/Al relative to Coast-Range river sediments. Near 36°S, marine sediments have high-Mg/Al (i.e. more Andean) sources during the last glacial period, and lower-Mg/Al (less Andean) sources during the Holocene. Near 41°S a Ti-rich source, likely from coast-range igneous intrusions, is prevalent during Holocene time, whereas high-Mg/Al Andean sources are more prevalent during the last glacial period. We infer that there is a dominant ice-sheet control of sediment sources. At 36°S, Andean-sourced sediment decreased as Andean mountain glaciers retreated after ~17.6 ka, coincident with local oceanic warming and southward retreat of the Patagonian Forest and, by inference, westerly winds. At 41°S Andean sediment dominance peaks and then rapidly declines at ~19 ka, coincident with local oceanic warming and the earliest deglacial sea-level rise. We hypothesize that this decreased flux of Andean material in the south is related to rapid retreat of the marine-based portion of the Patagonian Ice Sheet in response to global sea-level rise, as the resulting flooding of the southern portion of the Central Valley created a sink for Andean sediments in this region. Reversal of the decreasing deglacial Mg/Al trend at 41°S from 14.5 to 13.0 ka is consistent with a brief re-advance of the Patagonian ice sheet coincident with the Antarctic Cold Reversal.
Resumo:
Differences in regional responses to climate fluctuations are well documented on short time scales (e.g., El Niño-Southern Oscillation), but with the exception of latitudinal temperature gradients, regional patterns are seldom considered in discussions of ancient greenhouse climates. Contrary to the expectation of global warming or global cooling implicit in most treatments of climate evolution over millions of years, this paper shows that the North Atlantic warmed by as much as 6°C (1.5% decrease in d18O values of planktic foraminifera) during the Maastrichtian global cooling interval. We suggest that warming was the result of the importation of heat from the South Atlantic. Decreasing North Atlantic d18O values are also associated with increasing gradients in planktic d13C values, suggesting increasing surface-water stratification and a correlated strengthening of the North Atlantic Polar Front. If correct, this conclusion predicts arctic cooling during the late Maastrichtian. Beyond implications for the Maastrichtian, these data demonstrate that climate does not behave as if there is a simple global thermostat, even on geologic time scales.
Resumo:
In the austral summer of 2006/7 the ANDRILL MIS (ANtarctic geological DRILLing- McMurdo Ice Shelf) project recovered a 1285 m sediment core from beneath the Ross Ice Shelf near Hut Point Peninsula, Ross Island, Antarctica in a flexural moat associated with the volcanic loading of Ross Island. Contained within the upper ~600 m of this core are sediments recording 38 glacial to interglacial cycles of Early Pliocene to Pleistocene time, including 13 discrete diatomite units (DU). The longest of these, DU XI, is ~76 m thick, contains two distinct unconformities marked by layers of volcanic brecciated sands, and has been assigned an Early to Mid-Pliocene age (5-3 Ma). A detailed record (avg. sample spacing of 33 cm) of the siliceous microfossil assemblages have been generated for DU XI and used in conjunction with geochemical and sedimentological data to subdivide DU XI into four discrete subunits of continuous sedimentation. Within each unit, changes in diatom assemblages have been correlated with the d18O record, providing a temporal resolution as high as 600 yr, and allowing for the construction of a detailed age model and calculation of associated sediment accumulation rates within DU XI. Results indicate a productivity-dominated sedimentary record with higher sediment accumulation rates containing a greater proportion of hemipelagic mud occurring during relatively cool periods and reduced accumulation during warmer intervals. This implies that even during periods of substantial warmth, Milankovitch-paced changes in Antarctic ice volume can be linked to ecological changes recorded as shifts in diatom assemblages.
Resumo:
Global cooling and the development of continental-scale Antarctic glaciation occurred in the late middle Eocene to early Oligocene (~38 to 28 million years ago), accompanied by deep-ocean reorganization attributed to gradual Antarctic Circumpolar Current (ACC) development. Our benthic foraminiferal stable isotope comparisons show that a large d13C offset developed between mid-depth (~600 meters) and deep (>1000 meters) western North Atlantic waters in the early Oligocene, indicating the development of intermediate-depth d13C and O2 minima closely linked in the modern ocean to northward incursion of Antarctic Intermediate Water. At the same time, the ocean's coldest waters became restricted to south of the ACC, probably forming a bottom-ocean layer, as in the modern ocean. We show that the modern four-layer ocean structure (surface, intermediate, deep, and bottom waters) developed during the early Oligocene as a consequence of the ACC.
Resumo:
At Site 546, below the Mazagan Escarpment at a water depth of 4 km, 36 m of salt rock was cored from the top of one of a field of salt domes. The core was studied by thin section and a variety of geochemical procedures. The salt rock contains 0.1 to 3% carnallite and lesser amounts of sylvite and polyhalite, which with the corresponding high level of bromide place it within the potash evaporite facies. The bromide profile is of a dominantly marine evaporite deposited in moderately shallow brine which, however, was not repeatedly desiccated. A mineralogical argument suggests that the brine surface was not below sea level. An average of about 5% elastics, with dispersed anhydrite, darken the salt rock to deep shades of red, brown, and gray green. Most of the included materials are in highly deformed boudins or dispersions in the salt rock that has also undergone cataclasis in a subsequent, probably tectonic, deformation. The salt rock is slightly deficient in anhydrite, and the usual separate beds and laminae of anhydrite are virtually absent. Stable isotope ratios of sulfur and oxygen in the sulfate are clearly derived from sea water of Permian to Scythian age, in contrast to the late Triassic or Early Jurassic age of evaporites onshore in Morocco and Portugal and the corresponding evaporites offshore Maritime Canada. In contrast to those evaporites off the axis of Atlantic rifting, the salt at Site 546 may have been deposited in a very early central rift fed by marine waters from Tethys through the Gibraltar or South Atlas fracture zones.