924 resultados para oxygen sensor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m**-2 d**-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies. Flume experiments were conducted in February 2013 at the Institute for Environmental Sciences, University of Koblenz-Landau Landau. Experiments were performed in a closed oval-shaped acrylic glass flume with cross-sectional width of 4 cm and height of 10 cm and total length of 54 cm. The fluid flow was induced by a propeller driven by a motor and mean flow velocities of up to 20 cm s-1 were generated by applying voltages between 0 V and 4 V DC. The flume was completely sealed with an acrylic glass cover. Oxygen sensors were inserted through rubber seal fittings and allowed positioning the sensors with inclinations to the main flow direction of ~60°, ~95° and ~135°. A Clark type electrochemical O2 microsensor with a low stirring sensitivity (0.7%) was tested and a fast-responding needle-type O2 optode (PyroScience GmbH, Germany) was used as reference as optodes should not be stirring sensitive. Instantaneous three-dimensional flow velocities were measured at 7.4 Hz using stereoscopic particle image velocimetry (PIV). The velocity at the sensor tip was extracted. The correlation of the fluctuating O2 sensor signals and the fluctuating velocities was quantified with a cross-correlation analysis. A significant cross-correlation is equivalent to a significant artificial flux. For a total of 18 experiments the flow velocity was adjusted between 1.7 and 19.2 cm s**-1, and 3 different orientations of the electrochemical sensor were tested with inclination angles of ~60°, ~95° and ~135° with respect to the main flow direction. In experiments 16-18, wavelike flow was induced, whereas in all other experiments the motor was driven by constant voltages. In 7 experiments, O2 was additionally measured by optodes. Although performed simultaneously with the electrochemical sensor, optode measurements are listed as separate experiments (denoted by the attached 'op' in the filename), because the velocity time series was extracted at the optode tip, located at a different position in the flume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 yr). By using a model that is able to explicitly simulate the sensor (d18O), results can be directly compared with data from climatic archives in the different realms. Our results indicate that iLOVECLIM reproduces well the main feature of the LGM climate in the atmospheric and oceanic components. The annual mean d18O in precipitation shows more depleted values in the northern and southern high latitudes during the LGM. The model reproduces very well the spatial gradient observed in ice core records over the Greenland ice-sheet. We observe a general pattern toward more enriched values for continental calcite d18O in the model at the LGM, in agreement with speleothem data. This can be explained by both a general atmospheric cooling in the tropical and subtropical regions and a reduction in precipitation as confirmed by reconstruction derived from pollens and plant macrofossils. Data-model comparison for sea surface temperature indicates that iLOVECLIM is capable to satisfyingly simulate the change in oceanic surface conditions between the LGM and present. Our data-model comparison for calcite d18O allows investigating the large discrepancies with respect to glacial temperatures recorded by different microfossil proxies in the North Atlantic region. The results argue for a trong mean annual cooling between the LGM and present (>6°C), supporting the foraminifera transfer function reconstruction but in disagreement with alkenones and dinocyst reconstructions. The data-model comparison also reveals that large positive calcite d18O anomaly in the Southern Ocean may be explained by an important cooling, although the driver of this pattern is unclear. We deduce a large positive d18Osw anomaly for the north Indian Ocean that contrasts with a large negative d18Osw anomaly in the China Sea between the LGM and present. This pattern may be linked to changes in the hydrological cycle over these regions. Our simulation of the deep ocean suggests that changes in d18Osw between the LGM and present are not spatially homogenous. This is supported by reconstructions derived from pore fluids in deep-sea sediments. The model underestimates the deep ocean cooling thus biasing the comparison with benthic calcite d18O data. Nonetheless, our data-model comparison support a heterogeneous cooling of few degrees (2-4°C) in the LGM Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Holocene Twin Slides form the most recent of recurrent mass wasting events along the NE portion of Gela Basin within the Sicily Channel, central Mediterranean Sea. Here, we present new evidence on the morphological evolution and stratigraphic context of this coeval slide complex based on deepdrilled sediment sequences providing a >100 ka paleo-oceanographic record. Both Northern (NTS) and Southern Twin Slide (STS) involve two failure stages, a debris avalanche and a translational slide, but are strongly affected by distinct preconditioning factors linked to the older and buried Father Slide. Core-acoustic correlations suggest that sliding occurred along sub-horizontal weak layers reflecting abrupt physical changes in lithology or mechanical properties. Our results show further that headwall failure predominantly took place along sub-vertical normal faults, partly through reactivation of buried Father Slide headscarps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen penetration depth and temperature at the rim of the clam colony was measured with a small deep-sea microprofiler module (Treude et al., 2009), carrying 3 oxygen Clark-type microelectrodes (Revsbech et al., 1980) and one temperature sensor (Pt100, UST Umweltsensorentechnik GmbH, Germany). High-resolution microprofiles across the sediment-water interface were measured with a vertical resolution of 100 µm on a total length of 15 cm. Oxygen electrodes had a linear response to the oxygen concentration in seawater and were calibrated in situ using constant readings in the bottom water (oxygen concentration determined by Winkler titration) and the anoxic parts of the sediment.