939 resultados para carbon and nitrogen pool


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed sampling methods and an analytical system to determine the concentration of dissolved organic C (DOC) in marine pore waters. Our analytical approach is a modification of recently developed high-temperature, Pt-catalyzed oxidation methods; it uses Chromatographic trapping of the DOC-derived CO2 followed by reduction to CH4 and flame ionization detection. Sampling experiments with nearshore sediments indicate that pore-water separation by whole-core squeezing causes artificially elevated DOC concentrations, while pore-water recovery by sectioning and centrifugation does not appear to introduce DOC artifacts. Results from a set of northwestern Atlantic continental slope cores suggest that net DOC production accounts for >50% of the organic C that is recycled at the sediment-water interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotopic compositions of carbon and nitrogen and organic carbon content of sediments ranging from the Pliocene to the Pleistocene-Holocene in age from the Oman Margin (ODP Sites 724 and 725) are reported. In general, the organic carbon content is greater than 2% at Site 724. Prior to the Pleistocene-Holocene at this site, sediments with higher content of organic matter were deposited owing to favorable preservation conditions and/or higher productivity. In the Pleistocene, lower amounts of organic matter have been preserved; this material generally has more enriched nitrogen isotopic compositions. This may indicate intensification of the Oxygen Minimum Zone and denitrification with the onset of the Pleistocene. A correlation of carbon isotope content of these sediments with oxygen isotope stages at Site 724 indicates an enrichment in 13C during glacial events. Based on the stable isotope evidence of both carbon and nitrogen, there does not appear to be major input of terrigenous-derived allochthonous material in this marine environment. The timing and extent of monsoon winds on the productivity of this region are not evident, but require further studies for collaborative interpretation of small-scale features in the isotopic and carbon content of this environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of stable isotope (d13C TOC and d15N TN) and elemental parameters (TOC, TN contents and TOC/TN ratios) of bulk organic matter (<200 µm) from sediment cores recovered from the Patagonian lake Laguna Potrok Aike (Argentina) in the framework of the ICDP deep drilling project PASADO provided insights into past changes in lake primary productivity and environmental conditions in South Patagonia throughout the last Glacial-Interglacial transition. Stratigraphically constrained cluster analyses of all proxy parameters suggest four main phases. From ca 26,100 to 17,300 cal. years BP, lacustrine phytoplankton was presumably the predominant organic matter source in an aquatic environment with low primary productivity rates. At around 17,300 cal. years BP, abrupt and distinct shifts of isotopic and elemental values indicate that the lacustrine system underwent a rapid reorganization. Lake primary productivity (phytoplankton and aquatic macrophytes) shows higher levels albeit with large variations during most of the deglaciation until 13,000 cal. years BP. The main causes for this development can be seen in improved growing conditions for primary producers because of deglacial warming in combination with expedient availability of nutrients and likely calm wind conditions. After 13,000 cal. years BP, decreased d13C TOC values, TOC, TN contents and TOC/TN ratios indicate that the lake approached a new state with reduced primary productivity probably induced by unfavourable growing conditions for primary producers like strengthened winds and reduced nutrient availability. The steady increase in d15N TN values presumably suggests limitation of nitrate supply for growth of primary producers resulting from a nutrient shortage after the preceding phase with high productivity. Nitrate limitation and consequent decreased lacustrine primary productivity continued into the early Holocene (10,970-8400 cal. years BP) as reflected by isotopic and elemental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential use of stable carbon and nitrogen isotope ratios (d13C, d15N) of fish gills for studies on fish feeding ecology was evaluated by comparing the d13C and d15N of gill tissue with the more commonly used white muscle tissue. To account for the effect of lipid content on the d13C signatures, a study-specific lipid correction model based on C:N ratios was developed and applied to the bulk d13C data. For the majority of species in the study, we found no significant difference in d13C values between gill and muscle tissue after correction, but several species showed a small (0.3-1.4 per mil) depletion in 13C in white muscle compared to gill tissue. The average species difference in d15N between muscle and gill tissue ranged from -0.2 to 1.6 per mil for the different fish species with muscle tissue generally more enriched in 15N. The d13C values of muscle and gill were strongly linearly correlated (R**2 = 0.85) over a large isotopic range (13 per mil), suggesting that both tissues can be used to determine long-term feeding or migratory habits of fish. Muscle and gill tissue bulk d15N values were also strongly positively correlated (R**2= 0.76) but with a small difference between muscle and gill tissue. This difference indicates that the bulk d15N of the two tissue types may be influenced by different isotopic turnover rates or a different composition of amino acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotope (SI) ratios of carbon (d13C) and nitrogen (d15N) were measured in omnivorous and carnivorous deep-sea copepods of the families Euchaetidae and Aetideidae across the Atlantic sector of the Southern Ocean to establish their trophic positions. Due to high and variable C/N ratios related to differences in lipid content, d13C was corrected using a lipid-normalisation model. d15N signals ranged from 3.0-6.9 per mil in mesopelagic species to 7.0-9.5 per mil in bathypelagic congeners. Among the carnivorous Paraeuchaeta species, the epi- to mesopelagic species Paraeuchaeta antarctica had lower d15N values than the mesopelagic P. rasa and bathypelagic P. barbata. The same trend was observed among omnivorous Aetideidae, but was not significant. In the most abundant species P. antarctica, individuals from the western Atlantic had higher d13C and d15N values than specimens at the eastern stations. These longitudinal changes in d13C and d15N values were attributed to regional differences in hydrography and sea surface temperature (SST), in particular related to a northward extension of the Antarctic Polar Front (APF) at the easternmost stations. The results indicate that even in a mesopelagic carnivorous species, the changes in surface stable isotope signatures are pronounced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment and interstitial water samples recovered during DSDP Leg 93 at Site 603 (lower continental rise off Cape Hatteras) were analyzed for a series of geochemical facies indicators to elucidate the nature and origin of the sedimentary material. Special emphasis was given to middle Cretaceous organic-matter-rich turbidite sequences of Aptian to Turanian age. Organic carbon content ranges from nil in pelagic claystone samples to 4.2% (total rock) in middle Cretaceous carbonaceous mudstones of turbiditic origin. The organic matter is of marine algal origin with significant contributions of terrigenous matter via turbidites. Maturation indices (vitrinite reflectance) reveal that the terrestrial humic material is reworked. Maturity of autochthonous material (i.e., primary vitrinite) falls in the range of 0.3 to 0.6% Carbohydrate, hydrocarbon, and microscopic investigations reveal moderate to high microbial degradation. Unlike deep-basin black shales of the South and North Atlantic, organic-carbon-rich members of the Hatteras Formation lack trace metal enrichment. Dissolved organic carbon (DOC) in interstitial water samples ranges from 34.4 ppm in a sandstone sample to 126.2 ppm in an organic-matter-rich carbonaceous claystone sample. One to two percent of DOC is carbohydratecarbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen isotopes of chlorins, degradation products of chlorophyll, reflect the isotopic composition of nutrient N utilized by marine phytoplankton communities. Here we show that in sediments of the eastern Mediterranean Pleistocene and Holocene, values of d15N for chlorins and total nitrogen vary in concert, with a consistent offset of ~5 per mil reflecting the fractionation imparted during chlorophyll biosynthesis. Samples from the Integrated Ocean Drilling Program Sites 964 and 969 were analyzed at a sampling resolution of ~4-10 cm, clustered around sapropel events 2, 3, 4 and 5 (~100-170 ka). In low organic content sediments, chlorin values of ~0 per mil coincident with total nitrogen values of ~+ 5 per mil indicate that the latter reflects the original biomass and is not a consequence of diagenetic isotope enrichment. In sapropel horizons, the chlorin and total nitrogen values are 5 per mil more negative (~-5 per mil and ~ 0 per mil, respectively), resembling previously-reported, modern-day water-column particulates (~0 per mil). We suggest that nutrient conditions in the Eastern Mediterranean correspond to three scenarios and that the similarity between sapropel and modern-day bulk d15N is coincidental. Organic-poor marl sediments formed under oligotrophic conditions where surface productivity resulted from upwelling of Atlantic-sourced nitrate. Sapropels were characterized by enhanced diazotrophy that was likely fueled by increased riverine P fluxes to surface waters. Present-day conditions are dominated by anthropogenic N sources. These scenarios agree with a model of sapropel formation in which stratification caused by increased fresh-water inputs led to N fixation due to P:N nutrient imbalance. Enhanced production combined with stratification promoted and maintained anoxic deep waters, consequently increasing organic matter preservation. Such a model may be relevant to interpreting other episodes of intense organic matter deposition in past oceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km**2 and likely holds more than half of the entire soil organic carbon (SOC) mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean SOC stocks for the upper 1 m of soils were estimated at 29 kg/m**2 ± 10 kg/m**2 and at 14 kg/m**2 ± 7 kg/m**2, respectively. For the depth of 1 m, the total SOC pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the SOC pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of SOC stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The SOC mass which is stored in the perennially frozen ground at the increment 50-100 cm soil depth, which is currently excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg/m**2 ± 0.4 kg/m**2 for the Holocene river terrace and at 0.9 kg/m**2 ± 0.4 kg/m**2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.