977 resultados para Bacteria, abundance, standard deviation
Resumo:
Shorthorn sculpin (Myoxocephalus scorpius) from Frobisher Bay, Baffin Island, is a slow growing long-lived species. A wide range of diet items were present in the stomachs of the shorthorn sculpins sampled but 2-3 diet items (amphipod species) comprised 99.5 % of total food consumed. These amphipods were present in the stomachs in similar proportions among all age classes of shorthorn sculpin. Several new host records for parasites were reported and mean numbers of parasite species increased with shorthorn sculpin age. The increased diversity of parasite species and higher d15N values in older/larger individuals suggest that their diets were more diverse and the prey items consumed had higher d15N values. By contrast, the value of d13C in dominant diet items masked the d13C values of minor diet items. We conclude that parasites and stable isotope values provide complementary data on feeding patterns of the shorthorn sculpin. The ubiquitous marine acanthocephalan, Echinorhynchus gadi, was found at high prevalences (87-100 %) and mean intensities (28-35), and were localized in the midgut. In contrast to other studies on acanthocephalans, E. gadi did not influence fish condition as measured by condition factor, liver somatic and gonado-somatic indices.
Resumo:
Here we present results of the first comprehensive study of sulphur compounds and methane in the oligotrophic tropical West Pacific Ocean. The concentrations of dimethylsuphide (DMS), dimethylsulphoniopropionate (DMSP), dimethylsulphoxide (DMSO), and methane (CH4), as well as various phytoplankton marker pigments in the surface ocean were measured along a north-south transit from Japan to Australia in October 2009. DMS (0.9 nmol/l), dissolved DMSP (DMSPd, 1.6 nmol/l) and particulate DMSP (DMSPp, 2 nmol/l) concentrations were generally low, while dissolved DMSO (DMSOd, 4.4 nmol/l) and particulate DMSO (DMSOp, 11.5 nmol/l) concentrations were comparably enhanced. Positive correlations were found between DMSO and DMSP as well as DMSP and DMSO with chlorophyll a, which suggests a similar source for both compounds. Similar phytoplankton groups were identified as being important for the DMSO and DMSP pool, thus, the same algae taxa might produce both DMSP and DMSO. In contrast, phytoplankton seemed to play only a minor role for the DMS distribution in the western Pacific Ocean. The observed DMSPp : DMSOp ratios were very low and seem to be characteristic of oligotrophic tropical waters representing the extreme endpoint of the global DMSPp : DMSOp ratio vs. SST relationship. It is most likely that nutrient limitation and oxidative stress in the tropical West Pacific Ocean triggered enhanced DMSO production leading to an accumulation of DMSO in the sea surface. Positive correlations between DMSPd and CH4, as well as between DMSO (particulate and total) and CH4, were found along the transit. We conclude that both DMSP and DMSO serve as substrates for methanogenic bacteria in the western Pacific Ocean.
Resumo:
Phospholipid fatty acids were measured in samples of 60°-130°C sediment taken from three holes at Site 1036 (Ocean Drilling Program Leg 169) to determine microbial community structure and possible community replacement at high temperatures. Five of six samples had similar concentrations of phospholipid fatty acids (2-6 pmol/g dry weight of sediment), and biomass estimates from these measurements compare favorably with direct microscopic counts, lending support to previous microscopic measures of deep sedimentary biomass. Very long-chain phospholipid fatty acids (21 to 30 carbons) were detected in the sediment and were up to half the total phospholipid fatty acid measured; they appear to increase in abundance with temperature, but their significance is not known. Community composition from lipid analysis showed that samples contained standard eubacterial membrane lipids but no detectable archaeal lipids, though archaea would be expected to dominate the samples at high temperatures. Cluster analysis of Middle Valley phospholipid fatty acid compositions shows that lipids in Middle Valley sediment samples are similar to each other at all temperatures, with the exception of very long-chain fatty acids. The data neither support nor deny a shift to a high-temperature microbial community in hot cores, so at the present time we cannot draw conclusions about whether the microbes observed in these hot sediments are active.
Resumo:
Contents of rare earth elements (REE) in standard samples of Fe-Mn nodules (SDO-5, 6), Fe-Mn crust (SDO-7), and red clay (SDO-9) have been determined by ICP-MS and instrumental neutron activation analysis. Reproducibility of ICP-MS was 5-6%. These results are discussed and compared with other data. It has been found that distribution of REE in the standard samples of ocean Fe-Mn ores and red clay is highly homogenous.
Resumo:
We report the first microbiological characterization of a terrestrial methane seep in a cryo-environment in the form of an Arctic hypersaline (~24% salinity), subzero (-5 C), perennial spring, arising through thick permafrost in an area with an average annual air temperature of -15 C. Bacterial and archaeal 16S rRNA gene clone libraries indicated a relatively low diversity of phylotypes within the spring sediment (Shannon index values of 1.65 and 1.39, respectively). Bacterial phylotypes were related to microorganisms such as Loktanella, Gillisia, Halomonas and Marinobacter spp. previously recovered from cold, saline habitats. A proportion of the bacterial phylotypes were cultured, including Marinobacter and Halomonas, with all isolates capable of growth at the in situ temperature (-5 C). Archaeal phylotypes were related to signatures from hypersaline deep-sea methane-seep sediments and were dominated by the anaerobic methane group 1a (ANME-1a) clade of anaerobic methane oxidizing archaea. CARD-FISH analyses indicated that cells within the spring sediment consisted of ~84.0% bacterial and 3.8% archaeal cells with ANME-1 cells accounting for most of the archaeal cells. The major gas discharging from the spring was methane (~50%) with the low CH4/C2 + ratio and hydrogen and carbon isotope signatures consistent with a thermogenic origin of the methane. Overall, this hypersaline, subzero environment supports a viable microbial community capable of activity at in situ temperature and where methane may behave as an energy and carbon source for sustaining anaerobic oxidation of methane-based microbial metabolism. This site also provides a model of how a methane seep can form in a cryo-environment as well as a mechanism for the hypothesized Martian methane plumes.
Resumo:
Eight box cores from the tropical Atlantic were studied in detail with regard to foraminiferal oxygen isotopes, radiocarbon, and Globorotalia menardii abundance. A standard Atlantic oxygen-isotope signal was reconstructed for the last 20,000 yr. It is quite similar to the west-equatorial Pacific signal published previously. Deglaciation is seen to occur in two steps which are separated by a pause. Onset of deglaciation is after 15,000 yr B.P. The pause is centered between 11,000 and 12,000 yr B.P., but may be correlative with the Younger Dryas (10,500 yr B.P.) if allowance is made for a scale shift due to mixing processes on the sea floor. Step 2 is centered near 10,000 yr B.P. and is followed by a brief excursion toward light oxygen values. This excursion (the M event) may correlate with the Gulf of Mexico meltwater spike.