890 resultados para Sediment concentration
Resumo:
An additional Heinrich ice-rafting event is identified between Heinrich events 5 and 6 in eight cores from the Labrador Sea and the northwest Atlantic Ocean. It is characterized by sediment rich in detrital carbonate (40% CaCO3) with high concentration of floating dropstones, high coarse-fraction (% > 150 µm) content, and has a sharp contact with the underlying but grades into the overlying hemipelagic sediment. It also shows lighter d18ONpl values, indicating freshening due to iceberg rafting and/or meltwater discharge. This event is correlated with Dansgaard-Oeschger event 14 and interpreted as an additional Heinrich event, H5a. The thickness of H5a in the Labrador Sea reaches up to 220 cm. This additional Heinrich event has also been reported in cores PS2644 and SO82-5 from the northern North Atlantic. With the recognition of H5a the temporal spacing between Heinrich events 1 to 6 becomes more uniform (~7 ka).
Resumo:
The 60 km wide shelf off Mauritania is cut by several submarine canyons. Its water-circulation is controlled by the cool Canary current and upwelling. Its Recent sediments show faunal associations remarkably related to the grain size distribution which in water depths between 40 and 80 m is strongly influenced by reworking of older coarse sand or sandstone. In this depth range a mixed biofacies originating from Pleistocene and Recent material is encountered. The present lateral faunistic and sedimentological facies change, including horizons of mixed provenance, can be recognized in vertical sequences taken by vibro-coring. This correlation combined with 14C-datations on molluscs enable the reconstruction of the history of the last glacial regression and transgression. Due to the arid climate, the emerging calcareous shelf sediments are indurated and, therefore, protected from subaerial and submarine erosion. During low sea level eolian sand migrates over the shelf, but only about 1/10 of this material remains there and is later incorporated into the sandy shelf sediments. The calculated average rate of total sedimentation during Holocene is 15 cm, and the production rate of carbonate is 5 cm/1000 years.
Resumo:
The influence of biogenic opal sediment input (mainly diatom skeletons) on the fluorine budget of marine sediments will be shown for 24 sampling stations of the antarctic regions of Bransfield Strait, Powell Basin, South Orkney Plateau and northwestern Weddell Sea. 4 bulk samples, one from each sedimentation area, contain 9 to 28 wt.-% of biogenic opal , the clay fraction of the 24 samples investigated have 2 to 82 wt.-%. The fluorine concentration in the amorphous biogenic component is 15 ppm. 300 to 800 ppm of fluorine were measured in the clay fractions, 330 to 920 ppm in their lithogenic components. Biogenic opal causes a decrease in fluorine concentration of the sediment by a considerable amount: 6 to 56 % relative to the clay fraction, due to the proportions involved. Biogenic opal is therefore taken into account as a 'diluting' factor for the fluorine budget in marine sediments.
Resumo:
An increase in whole ocean alkalinity during glacial periods could account, in part, for the drawdown of atmospheric CO2 into the ocean. Such an increase was inevitable due to the near elimination of shelf area for the burial of coral reef alkalinity. We present evidence, based on down-core measurements of benthic foraminiferal B/Ca and Mg/Ca from a core in the Weddell Sea, that the deep ocean carbonate ion concentration, [CO3 2-], was elevated by ~25 µmol/kg during each glacial period of the last 800 kyrs. The heterogeneity of the preservation histories in the different ocean basins reflects control of the carbonate chemistry of the deep glacial ocean in the Atlantic and Pacific by the changing ventilation and chemistry of Weddell Sea waters. These waters are more corrosive than interglacial northern sourced waters, but not as undersaturated as interglacial southern sourced waters. Our inferred increase in whole ocean alkalinity can be reconciled with reconstructions of glacial saturation horizon depth and the carbonate budget, if carbonate burial rates also increased above the saturation horizon as a result of enhanced pelagic calcification. The Weddell records display low [CO3 2-] during deglaciations and peak interglacial warmth, coincident with maxima in %CaCO3 in the Atlantic and Pacific Oceans. Should the burial rate of alkalinity in the more alkaline glacial deepwaters outstrip the rate of alkalinity supply, then pelagic carbonate production by the coccolithophores, at the end of the glacial maximum could drive a decrease in ocean [CO3 2-] and act to trigger the deglacial rise in pCO2.
Resumo:
We combined the analysis of sediment trap data and satellite-derived sea surface chlorophyll to quantify the amount of organic carbon export to the deep sea in the upwelling induced high production area off northwest Africa. In contrast to the generally global or basin-wide adoption of export models, we used a regionally fitted empirical model. Furthermore, the application of our model was restricted to a dynamically defined region of high chlorophyll concentration in order to restrict the model application to an environment of more homogeneous export processes. We developed a correlation-based approximation to estimate the surface source area for a sediment trap deployed from 11 June 1998 to 7 November 1999 at 21.25°N latitude and 20.64°W longitude off Cape Blanc. We also developed a regression model of chlorophyll and export of organic carbon to the 1000 m depth level. Carbon export was calculated for an area of high chlorophyll concentration (>1 mg/m**3) adjacent to the coast on a daily basis. The resulting zone of high chlorophyll concentration was 20,000-800,000 km**2 large and yielded a yearly export of 1.123 to 2.620 Tg organic carbon. The average organic carbon export within the area of high chlorophyll concentration was 20.6 mg/m**2d comparable to 13.3 mg/m**2d as found in the sediment trap results if normalized to the 1000 m level. We found strong interannual variability in export. The period autumn 1998 to summer 1999 was exceeding the mean of the other three comparable periods by a factor of 2.25. We believe that this approach of using more regionally fitted models can be successfully transferred even to different oceanographic regions by selecting appropriate definition criteria like chlorophyll concentration for the definition of an area to which it is applicable.