954 resultados para Calculated from stable oxygen isotopes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-water benthic ostracodes from the Pliocene-Pleistocene interval of ODP Leg 107, Hole 654A (Tyrrhenian Sea) were studied. From a total of 106 samples, 40 species considered autochthonous were identified. Detailed investigations have established the biostratigraphic distribution of the most frequent ostracode taxa. The extinction levels of Agrenocythere pliocenica (a psychrospheric ostracode) in Hole 654A and in some Italian land sections lead to the conclusion that the removal of psychrospheric conditions took place in the Mediterranean Sea during or after the time interval corresponding to the Small Gephyrocapsa Zone (upper part of early Pleistocene), and not at the beginning of the Quaternary, as previously stated. Based on a reduced matrix of quantitative data of 63 samples and 20 variables of ostracodes, four varimax assemblages were extracted by a Q-mode factor analysis. Six factors and eight varimax assemblages were recognized from the Q-mode factor analysis of the quantitative data of 162 samples and 47 variables of the benthic foraminifers. The stratigraphic distributions of the varimax assemblages of the two faunistic groups were plotted against the calcareous plankton biostratigraphic scheme and compared in order to trace the relationship between the benthic foraminifers and ostracodes varimax assemblages. General results show that the two populations, belonging to quite different taxa, display almost coeval changes along the Pliocene-Pleistocene sequence of Hole 654A, essentially induced by paleoenvironmental modifications. Mainly on the base of the benthic foraminifer assemblages (which are quantitatively better represented than the ostracode assemblages), it is possible to identify such modifications as variations in sedimentation depth and in bottom oxygen content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have obtained a detailed carbon-isotope stratigraphy of the Paleocene sections recovered from Deep Sea Drilling Project (DSDP) Holes 577 and 577A. This 13C record is useful in stratigraphically correlating the two holes and in interpreting the magnetostratigraphic data. Comparison with the published data for Site 527 (Southeast Atlantic Ocean) shows that 13C stratigraphy is also valuable for long-distance correlation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition from the late Oligocene warm period into the early Miocene was marked by a series of rapid and brief episodes of cryospheric expansion and global cooling. We analyzed benthic foraminifers from nannofossil oozes recovered at Ocean Drilling Program Site 1218 to construct a stable isotope stratigraphy for the deep Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observation that Greenland and Antarctic temperatures have followed a specific 'asymmetrical' pattern on millennial time-scales sets rigid constraints on any viable theory of abrupt climate change. The further observation that the very same asymmetry is also reflected in planktonic and benthic d18O measurements from the Northeast Atlantic has extended this constraint to include a specific response in the ocean. Here we present records of deep-water temperature, d18O and d13C variability from the Northeast Atlantic that help to shed light on the links between overturning circulation perturbations, sea-level variability and inter-hemispheric climate change on millennial time-scales. Results indicate that while deep-water temperatures in the Northeast Atlantic have tracked Greenland climate, the d18O signature of local deepwater (d18Odw) has varied in a manner more reminiscent of Antarctic temperature variability. The previously identified correspondence of Antarctic warm events with benthic d18O minima in the Northeast Atlantic is thus found to apply specifically to d18Odw minima, and to extend beyond Marine Isotope Stage 3 to the entirety of the last 50 ka. It is impossible to reconcile completely the Iberian Margin d18Odw record with existing reconstructions of millennial sea-level variability, leading to the conclusion that a significant portion of the d18Odw record must represent local hydrographic change. This is supported by benthic d13C measurements, which suggest the incursion during Greenland stadials of a colder, low-d18O and low-d13C water-mass, of presumed Antarctic origin. These observations confirm a one-to-one coupling of inter-hemispheric climate events with changes in the Atlantic overturning circulation, but fail to rule in or out a unique mechanism by which they were triggered.