225 resultados para whole-mounted clearing
Resumo:
Small-scale shear zones are present in drillcore samples of abyssal peridotites from the Mid-Atlantic ridge at 15°20'N (Ocean Drilling Program Leg 209). The shear zones act as pathways for both evolved melts and hydrothermal fluids. We examined serpentinites directly adjacent to such zones to evaluate chemical changes resulting from melt-rock and fluid-rock interaction and their influence on the mineralogy. Compared to fresh harzburgite and melt-unaffected serpentinites, serpentinites adjacent to melt-bearing veins show a marked enrichment in rare earth elements (REE), strontium and high field strength elements (HFSE) zirconium and niobium. From comparison with published chemical data of variably serpentinized and melt-unaffected harzburgites, one possible interpretation is that interaction with the adjacent melt veins caused the enrichment in HFSE, whereas the REE contents might also be enriched due to hydrothermal processes. Enrichment in alumina during serpentinization is corroborated by reaction path models for interaction of seawater with harzburgite-plagiogranite mixtures. These models explain both increased amounts of alumina in the serpentinizing fluid for increasing amounts of plagiogranitic material mixed with harzburgite, and the absence of brucite from the secondary mineralogy due to elevated silica activity. By destabilizing brucite, nearby melt veins might fundamentally influence the low-temperature alteration behaviour of serpentinites. Although observations and model results are in general agreement, due to absence of any unaltered protolith a quantification of element transport during serpentinization is not straightforward.
Resumo:
Coring during Ocean Drilling Program and Deep Sea Drilling Project Legs 163, 152, 104, 81, and 38 recovered sequences of altered basalt from North Atlantic seaward-dipping reflector sequences (SDRS) erupted during the initial rifting of Greenland from northern Europe and likely associated with excessive mantle temperatures caused by an impacting mantle plume head. Cr-rich spinel is found abundantly as inclusions and groundmass crystals within the olivine-rich lavas of Hole 917A (Leg 152) cored into the Southeast Greenland SDRS, but only rarely as inclusions within plagioclase in the lavas of the Vøring Plateau SDRS, and it is absent from other cored SDRS lavas from the Rockall Plateau and Southeast Greenland. Eruptive melt compositions determined from inferred, thermodynamically-defined, spinel-melt exchange equilibria indicate that the most primitive melts represented by Hole 917A basalts have Mg/(Mg + Fe2+) at least as high as 0.70 and approach near-primary mantle melt compositions. In contrast, Cr-rich spinels from Hole 338 (Leg 38) lavas on the Vøring Plateau SDRS give evidence for melt with Mg/(Mg + Fe2+) only as high as 0.64. This study underlines that primitive melts similar to those from Hole 917A comprise only a small fraction of the eruptive North Atlantic SDRS melts, and that most SDRS basalts were, in fact, too evolved to have precipitated Cr-rich spinel, with true melt Mg/(Mg + Fe2+) likely below 0.60. The evolved nature of the SDRS basalts implies large amounts of fractionation at the base of the crust or deep within it, consistent with seismic results that indicate an abnormally thick Layer 3 underlying the SDRS.