300 resultados para south-central Montana


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the flux of Al to sediment accumulating beneath the zone of elevated productivity in the central equatorial Pacific Ocean, along a surface sediment transect at 135°W as well as downcore for a 650 kyr record at 1.3°N, 133.6°W. Across the surface transect, a pronounced, broadly equatorially symmetric increase in Al accumulation is observed, relative to Ti, with Al/Ti ratios reaching values 3-4 times that of potential detrital sources. The profile parallels biogenic accumulation and the modeled flux of particulate 234Th, suggesting rapid and preferential adsorptive removal of Al from seawater by settling biogenic particles. Normative calculations confirm that most Al is unsupported by the terrigenous fraction. The observed distributions are consistent with previous observations of the relative and absolute behavior of Al and Ti in seawater, and we can construct a reasonable mass balance between the amount of seawater-sourced Al retained in the sediment and the amount of seawater Al available in the overlying column. The close tie between Al/Ti and biogenic accumulation (as opposed to concentration) emphasizes that biogenic sedimentary Al/Ti responds to removal-transport phenomena and not bulk sediment composition. Thus, in these sediments dominated by the biogenic component, the bulk Al/Ti ratio reflects biogenic particle flux, and by extension, productivity of the overlying seawater. The downcore profile of Al/Ti at 1.3°N displays marked increases during glacial episodes, similar to that observed across the surface transect, from a background value near Al/Ti of average upper crust. The excursions in Al/Ti are stratigraphically coincident with maxima in both bulk and CaCO3 accumulation and the excess Al appears to not be preferentially affiliated with opaline or organic phases. Consistent with the similar behavioral removal of Al and 234Th, the latter of which responds to the total particle flux, the Al flux reflects carbonate accumulation only because carbonate comprises the dominant flux in these particular deposits. These results collectively indicate that (1) Al in biogenic sediment and settling biogenic particles is strongly affected by a component adsorbed from seawater. Therefore, the common tenet that Al is dominantly associated with terrestrial particulate matter, and the subsequent use of Al distributions to calculate the abundance and flux of terrestrial material in settling particles and sediment, needs to be reevaluated. (2) The Al/Ti ratio in biogenic sediment can be used to trace the productivity of the overlying water, providing a powerful new paleochemical tool to investigate oceanic response to climatic variation. (3) The close correlation between the Al/Ti productivity signal and carbonate maxima downcore at 1.3°N suggests that the sedimentary carbonate maxima in the central equatorial Pacific Ocean record increased productivity during glacial episodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Above the Walvis Ridge, in the SE Atlantic Ocean, we collected living plantkic foraminifera from the upper water column using depth stratified plantkon tows. The oxygen isotope composition (d18Oc) in shells of foraminifera and shell concentration profiles show seasonal and depth habitats of individual species. The tow results are compared with the average annual deposition d18Oc from sediment traps and the interannual average d18Oc of fossil specimens in top sediments at the same site. The species Globigerinita glutinata best reflects the austral winter/spring sea surface temperature (SST). Its d18Oc signal in top sediments remains pristine. In contrast, tow results also show that Globigerinoides ruber continues to calcify below the surface mixed layer (SML), i.e., down to the deep chlorophyll maximum (DCM); hence its d18Oc signature of exported specimens reflects the SST only when SML incorporates the DCM. Deep tow and sediment trap results show that both Globorotalia truncatulinoides and Globorotalia inflata record the temperature between 150 and 350 m, depending on the season and the shell size. However, for all fossil taxa in sediments apart from Globigerinita glutinata, we observe a positive d18Oc shift with respect to the sediment trap and plankton tow values, likely related to the interannual flux changes and deep encrustation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of spatial structure of hydrophysical fields and its vertical evolution in the Northeast Atlantic in a layer from the surface down to 2-2.5 km are carried out based on results of measurements in a testing area (31°-36°N, 20°-26°W) southeast of the Azores in autumn 1993. A description of an anti-cyclonic lens (ACL) of Mediterranean water (MW), which was found in the eastern part of the testing area from data of sets of sequential surveys, is presented. Analysis of CTD and XBT measurements in an area west of the lens allows to conclude that despite some contraction of width of the Azores Current directed eastward (from 60-80 km to 50-60 km) its total eastward volume transport for a period of time from October to November does not vary much. It is shown that intermediate salinity maxima in the northern part of the testing area formed by advection of MW and meddy destruction weakens while intersecting the Azores frontal zone (AFZ) from north to south, displacing itself to larger depth, and increases in thickness. Analysis of data shows that the number of lenses observed within the selected area north of the AFZ is two times more than that observed south of it. North of the AFZ observed salinity maximum and local temperature maxima may be associated with accumulation of heat and salt because of the fact that the AFZ is not only a southern boundary of penetration of MW into the North Atlantic, but also is a "semitransparent" boundary for Mediterranean lenses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated dissolved methane distributions along a 6 km transect crossing active seep sites at 40 m water depth in the central North Sea. These investigations were done under conditions of thermal stratification in summer (July 2013) and homogenous water column in winter (January 2014). Dissolved methane accumulated below the seasonal thermocline in summer with a median concentration of 390 nM, whereas during winter, methane concentrations were typically much lower (median concentration of 22 nM). High-resolution methane analysis using an underwater mass-spectrometer confirmed our summer results and was used to document prevailing stratification over the tidal cycle. We contrast estimates of methane oxidation rates (from 0.1 to 4.0 nM day**-1) using the traditional approach scaled to methane concentrations with microbial turnover time values and suggest that the scaling to concentration may obscure the ecosystem microbial activity when comparing systems with different methane concentrations. Our measured and averaged rate constants (k') were on the order of 0.01 day**-1, equivalent to a turnover time of 100 days, even when summer stratification led to enhanced methane concentrations in the bottom water. Consistent with these observations, we could not detect known methanotrophs and pmoA genes in water samples collected during both seasons. Estimated methane fluxes indicate that horizontal transport is the dominant process dispersing the methane plume. During periods of high wind speed (winter), more methane is lost to the atmosphere than oxidized in the water. Microbial oxidation seems of minor importance throughout the year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under present climate conditions, convection at high latitudes of the North Pacific is restricted to shallower depths than in the North Atlantic. To what extent this asymmetry between the two ocean basins was maintained over the past 20 kyr is poorly known because there are few unambiguous proxy records of ventilation from the North Pacific. We present new data for two sediment cores from the California margin at 800 and 1600 m depth to argue that the depth of ventilation shifted repeatedly in the northeast Pacific over the course of deglaciation. The evidence includes benthic foraminiferal Cd/Ca, 18O/16O, and 13C/12C data as well as radiocarbon age differences between benthic and planktonic foraminifera. A number of features in the shallower of the two cores, including an interval of laminated sediments, are consistent with changes in ventilation over the past 20 kyr suggested by alternations between laminated and bioturbated sediments in the Santa Barbara Basin and the Gulf of California [Keigwin and Jones, 1990 doi:10.1029/PA005i006p01009; Kennett and Ingram, 1995 doi:10.1038/377510a0; Behl and Kennett, 1996 doi:10.1038/379243a0]. Data from the deeper of the two California margin cores suggest that during times of reduced ventilation at 800 m, ventilation was enhanced at 1600 m depth, and vice versa. This pronounced depth dependence of ventilation needs to be taken into account when exploring potential teleconnections between the North Pacific and the North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solution rate of biogenic opal in near-surface sediments in the Central Equatorial Pacific is three to eight orders of magnitude lower than similar acid-cleaned samples. Iron, magnesium and calcium aluminosilicates may be the minerals which are forming on the surface of the opal and reducing its solution rate. The scale height of the system studied suggests that diffusive and not advective processes are primarily responsible for the removal of dissolved silica in sediments. Solution budget calculations for this area suggest that 90-99 per cent of the biogenic opal produced in surface waters dissolves before reaching the sediment-water interface; an additional amount dissolves within the sediment and diffuses into bottom waters leaving 0.05-0.15 per cent of the original amount of opal produced by organisms in the sedimentary record. The relative solution potential of the upper 1000 m of the water column varies by more than an order of magnitude from the Antarctic to Equator and may have a pronounced effect on the accumulation rate of biogenic opal in underlying sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Leg 92 of the Deep Sea Drilling Project, sediments containing calcareous nannofossils of latest Oligocene to Holocene age were recovered from 14 holes at six sites (597 to 602) along the East Pacific Rise. The combined sections yield a virtually complete record for the region, with a compressed upper Miocene to Pleistocene interval. The nannofossil content of 14 U.S.N.S. Eltanin piston cores from the study area were also examined in order to supplement data generated during Leg 92. Two taxonomically new combinations are presented: Sphenolithus umbellus and Pontosphaera segmenta. Assemblages of calcareous nannofossils juxtaposed in reversed stratigraphic order within the upper Miocene provide strong evidence for downslope transport of sediments along the East Pacific Rise during the Messinian. Narrow bands of dark metalliferous sediment of coccolith Zone CN8b alternate with normal light-colored, in situ, pelagic sequences of Zone CN9b. This may indicate more vigorous bottom current activity between 5.40 and 6.70 Ma.