791 resultados para saturation irradiance
Resumo:
The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted in dense phytoplankton blooms in surface waters of Pine Island Bay, Pine Island Polynya, and Amundsen Polynya. Phytoplankton biomass distribution was the opposite of the distribution of dissolved Fe (DFe), confirming the uptake of glacial DFe in surface waters by phytoplankton. Phytoplankton biomass in the polynyas ranged from 0.6 to 14 µg Chl a / L, with lower biomass at glacier sites where strong upwelling of Modified Circumpolar Deep Water from beneath glacier tongues was observed. Phytoplankton blooms in the polynyas were dominated by the haptophyte Phaeocystis antarctica, whereas the phytoplankton community in the sea ice zone was a mix of P. antarctica and diatoms, resembling the species distribution in the Ross Sea. Water column productivity based on photosynthesis versus irradiance characteristics averaged 3.00 g C /m**2/d in polynya sites, which was approximately twice as high as in the sea ice zone. The highest water column productivity was observed in the Pine Island Polynya, where both thermally and salinity stratified waters resulted in a shallow surface mixed layer with high phytoplankton biomass. In contrast, new production based on NO3 uptake was similar between different polynya sites, where a deeper UML in the weakly, thermally stratified Pine Island Bay resulted in deeper NO3 removal, thereby offsetting the lower productivity at the surface. These are the first in situ observations that confirm satellite observations of high phytoplankton biomass and productivity in the Amundsen Sea. Moreover, the high phytoplankton productivity as a result of glacial input of DFe is the first evidence that melting glaciers have the potential to increase phytoplankton productivity and thereby CO2 uptake, resulting in a small negative feedback to anthropogenic CO2 emissions.
Resumo:
The development of the seasonal phytoplankton bloom in the Ross Sea was studied during two cruises. The first, conducted in November-December 1994, investigated the initiation and rapid growth of the bloom, whereas the second (December 1995-January 1996) concentrated on the bloom's maximum biomass period and the subsequent decline in biomass. Central to the understanding of the controls of growth and the summer decline of the bloom is a quantitative assessment of the growth rate of phytoplankton. Growth rates were estimated over two time scales with different methods. The first estimated daily growth rates from isotropic incorporation under simulated in situ conditions, including 14C, 15N and 32Si uptake measurements combined with estimates of standing stocks of particulate organic carbon, nitrogen and biogenic silica. The second method used daily to weekly changes in biomass at selected locations, with net growth rates being estimated from changes in standing stocks of phytoplankton. In addition, growth rates were estimated in large-volume experiments under optimal irradiances. Growth rates showed distinct temporal patterns. Early in the growing season, short-term estimates suggested that growth rates of in situ assemblages were less than maximum (relative to the temperature-limited maximum) and were likely reduced due to low irradiance regimes encountered under the ice. Growth rates increased thereafter and appeared to reach their maximum as biomass approached the seasonal peak, but decreased markedly in late December. Differences between the major taxonomic groups present were also noted, especially from the isotopic tracer experiments. The haplophyte Phaeocystic antarctica was dominant in 1994 throughout the growing season, and it exhibited the greatest growth rates (mean 0.41/day) during spring. Diatom standing stocks were low early in the growing season, and growth rates averaged 0.100/day. In summer diatoms were more abundant, but their growth rates remained much lower (mean of 0.08/day) than the potential maximum. Understanding growth rate controls is essential to the development of predictive models of the carbon cycle and food webs in Antarctic waters.
Resumo:
The need to obtain ocean color essential climate variables (OC-ECVs) using hyperspectral technology has gained increased interest in recent years. Assessing ocean color on a large scale in high latitude environments using satellite remote sensing is constrained by polar environmental conditions. Nevertheless, on a small scale we can assess ocean color using above-water and in-water remote sensing. Unfortunately, above-water remote sensing can only determine apparent optical properties leaving the sea surface and is susceptible to near surface environmental conditions for example sky and sunglint. Consequently, we have to rely on accurate in-water remote sensing as it can provide both synoptic inherent and apparent optical properties of seawater. We use normalized water leaving radiance LWN or the equivalent remote sensing reflectance RRS from 27 stations to compare the differences in above-water and in-water OC-ECVs. Analysis of above-water and in-water RRS spectra provided very good match-ups (R2 > 0.97, MSE<1.8*10**-7) for all stations. The unbiased percent differences (UPD) between above-water and in-water approaches were determined at common OC-ECVs spectral bands (410, 440, 490, 510 and 555) nm and the classic band ratio (490/555) nm. The spectral average UPD ranged (5 - 110) % and band ratio UPD ranged (0 - 12) %, the latter showing that the 5% uncertainty threshold for ocean color radiometric products is attainable. UPD analysis of these stations West of Greenland, Labrador Sea, Denmark Strait and West of Iceland also suggests that the differences observed are likely a result of environmental and instrumental perturbations.
Resumo:
Fucus vesiculosus L. (Phaeophyceae) is the most abundant and hence ecologically most important primary producer, carbon sink and habitat provider in the western Baltic Sea. All F. vesiculosus L. specimens were collected on 23 April 2014 from a depth of 0.2-1 m in the non-tidal Kiel Fjord, western Baltic Sea (54°27'N; 10°12'E), where this species forms dense and almost monospecific stands on stones. After sampling the algal thalli were stored in a refrigerator box with water from the sampling site, transported to Bremerhaven and stored at 10 °C for one day in filtered seawater. Experiments were conducted with vegetative apical tips (6.7±0.5 cm length), the actively growing region of F. vesiculosus, which were randomly selected and cut from 144 different individuals prior to the experiments. These tips were acclimated to laboratory conditions for three days in filtered seawater at 10 °C before the start of the experiment. Furthermore, 30 additional vegetative apices were freeze-dried to document the initial biochemical status of F. vesiculosus in its native habitat. A temperature gradient was installed in a walk-in constant cooling chamber (15 °C) in nine water baths (5, 10, 15, 20, 24, 26, 27, 28 and 29 °C ± 0.1 °C) which were tempered by thermostats (5, 10 and 15 °C: Huber Variostat CC + Pilot ONE, Peter Huber Kältemaschinen GmbH, Offenburg, Germany; 20 and 28 °C: Haake DC3, Thermo Fisher Scientific Inc., Waltham, USA; 24, 26, 27 and 29 °C: Haake DC10). Every temperature treatment consisted of four 2 L glass beakers (n = 4). In each beaker four F. vesiculosus apices were grown in 2 µm-filtered North Sea water diluted with demineralized water in a ratio of 1:1 and enriched with nutrients after Provasoli (1968; 1/10 enrichment), leading to a salinity of about 15.6 which equaled habitat conditions. The algae were exposed to an irradiance of 130 µmol photons m-2 s-1 ±10 % (Powerstar HGI-TS 150 W, OSRAM GmbH, Bad Homburg, Germany) measured at the top of the beaker under a 16:8 h L:D cycle. The media in the beakers was changed every third or fourth day and aerated with artificial air containing 380 ppm CO2 (gas mixing device; HTK Hamburg GmbH, Hamburg, Germany). Before the experiment, the algae were acclimated to the final temperatures in steps of 5 °C for 2 days each, beginning at 10 °C. After 21 days exposure time, three out of four samples per replicate were freeze-dried for further biochemical analyses, and afterwards the thermostats were turned off to reduce the temperature to 16±0.4 °C for another 10 days permitting growth under post-culture conditions.