92 resultados para pressure sensor


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The short sediment temperature probe were deployed and recovered with the LOOME observatory in 2009 and 2010, respectively. In addition to temperature, the loggers also recorded bottom water pressure at a sampling interval of 20 minutes. Even though the data obtained from the short temperature probe was strongly disturbed by leakage through a corroded connector, the data shows clearly that the probe was pulled out of the sediment on October 26, 2009, presumably by advancing mud flows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exchanges between the North Atlantic and the Arctic Ocean result in the most dramatic water mass conversions in the World Ocean: warm and saline Atlantic waters, flowing through the Nordic Seas into the Arctic Ocean, are modified by cooling, freezing and melting to become shallow fresh waters, ice and saline deep waters. The outflow from the Nordic Seas to the south provides the initial driving of the global thermohaline circulation cell. Knowledge of these fluxes and understanding of the modification processes is a major prerequisite for the quantification of the rate of overturning within the large circulation cells of the Arctic and the Atlantic Oceans, and is also a basic requirement for understanding the role of these ocean areas in climate variability on interannual to decadal time scales. The Fram Strait represents the only deep connection between the Arctic Ocean and the Nordic Seas. Just as the freshwater transport from the Arctic Ocean is of major influence on convection in the Nordic Seas and further south, the transport of warm and saline Atlantic water affects the water mass characteristics in the Arctic Ocean which has consequences for the internal circulation and possibly influences also ice and atmosphere. The West Spitsbergen Current carrying Atlantic Water northward. The East Greenland Current, carrying water from the Arctic Ocean southwards has a concentrated core above the continental slope. It is our aim to measure the oceanic fluxes through Fram Strait and to determine their variability in seasonal to decadal time scales. 53 CTD profiles were taken at 51 stations. Two CTD systems from Sea-Bird Electronics Inc SBE911+ were used. Mainly SN 561 with duplicate T and C sensors (temperature sensors SBE3, SN 2685 and 2678, conductivity sensors SBE4, SN 2325 and 2618 and pressure sensor Digiquartz 410K-105 SN 75659) was in service. For the control of the temperature sensors a SBE35 RT digital reversing thermometer, SN 27 was applied. The CTD was connected to a SBE32 Carousel Water Sampler, SN 273 (24 12-liter bottles). For 3 CTD-Stations (726-3, 727-1, 728-1) the Sea-Bird 911+ probe SN 485 was used with temperature sensor SBE3 SN 2460, conductivity sensor SBE4 SN 2054, pressure sensor Digiquartz 410K SN 68997 and the SBE32 Carousel Water Sampler SN 202. Additionally Benthos Altimeters Model 2110-2, SN 189 and SN 208 and Wetlabs C-Star Transmissiometers SN 403 and SN 267 were mounted on the carousels. During the cruise a total number of 184 water samples were analysed with a Guildline Autosal 8400B salinometer, and IAPSO standard seawater batch number P141, K=0.99993. 20 salinity samples were brought back to AWI for onshore analysis. The CTD sensors were calibrated before and after the cruise by Sea-Bird Electronics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The data presented here were collected during the cruise SO248 (Project BacGeoPac) with the RV Sonne from Auckland, New Zealand to Dutch Harbor, Alaska/USA. The cruise lasted from May 1, 2016 to June 3, 2016 and 19 vertical CTD-hauls were conducted. The CTD system used during this cruise was a Sea-Bird Electronics Inc. SBE 911plus probe (SN 09-1266). The CTD was attached to a SBE 32 Carousel Water Sampler (SN 32-1119) containing 24 20-liter Ocean Test Equipment Inc. bottles. The system was equipped with double temperature (SBE 3) and conductivity sensors (SBE 4), a pressure sensor (Digiquartz) an oxygen (Aanderaa Optode 4831F) and, an altimeter (Bentos) and a chlorophyll fluorometer combined with a turbidity sensor (FluoroWetlabECO _AFL FL). The sensors were pre-calibrated by the manufacturers. The data were recorded with the Seasave V 7.23.2 software and processed using the SeaBird SBE Data Processing and the ManageCTD-software. The data were processed in the following way: Data obtained during adaptation of the CTD to ambient water conditions were removed manually. The "wildedit", "loopedit", "despike", "binavg" routines were applied. The data were also visually checked and a double sensor check was conducted. The accuracy of the double sensors derived from 56 data sets were: Temperature T = 0.0007 °C; Conductivity: C = 0,0071 mS/cm; Salinity S = 0.0081 psu. The salinity data (S by unsing pss78) were converted to absolute Salinity (SA) by using the TEOS 10 toolbox. The ship position data were derived from the shipboard GPS-system linked to the CTD data. The time zone is given in UTC. The oxygen CTD data were validated by additional measurements of 98 water samples using the Winkler titration method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements of partial pressure of carbon dioxide (pCO2), using a ProOceanus CO2-Pro instrument mounted on the flowthrough system. This automatic sensor is fitted with an equilibrator made of gas permeable silicone membrane and an internal detection loop with a non-dispersive infrared detector of PPSystems SBA-4 CO2 analyzer. A zero-CO2 baseline is provided for the subsequent measurements circulating the internal gas through a CO2 absorption chamber containing soda lime or Ascarite. The frequency of this automatic zero point calibration was set to be 24 hours. All data recorded during zeroing processes were discarded with the 15-minute data after each calibration. The output of CO2-Pro is the mole fraction of CO2 in the measured water and the pCO2 is obtained using the measured total pressure of the internal wet gas. The fugacity of CO2 (fCO2) in the surface seawater, whose difference with the atmospheric CO2 fugacity is proportional to the air-sea CO2 fluxes, is obtained by correcting the pCO2 for non-ideal CO2 gas concentration according to Weiss (1974). The fCO2 computed using CO2-Pro measurements was corrected to the sea surface condition by considering the temperature effect on fCO2 (Takahashi et al., 1993). The surface seawater observations that were initially estimated with a 15 seconds frequency were averaged every 5-min cycle. The performance of CO2-Pro was adjusted by comparing the sensor outputs against the thermodynamic carbonate calculation of pCO2 using the carbonic system constants of Millero et al. (2006) from the determinations of total inorganic carbon (CT ) and total alkalinity (AT ) in discrete samples collected at sea surface. AT was determined using an automated open cell potentiometric titration (Haraldsson et al. 1997). CT was determined with an automated coulometric titration (Johnson et al. 1985; 1987), using the MIDSOMMA system (Mintrop, 2005). fCO2 data are flagged according to the WOCE guidelines following Pierrot et al. (2009) identifying recommended values and questionable measurements giving additional information about the reasons of the questionability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bottom pressure, tilt and seawater physical-properties were monitored for a year using two instruments within the immerged Santorini caldera (Greece). Piggy-backed on the CALDERA2012 cruise, this geodetic experiment was designed to monitor evolution of the 2011-2012 Santorini unrest. Conducted during a quiescent period, it allowed us to study oceanographic and atmospheric signal in our data series. We observe periodic oceanographic signals associated with tides, and seiches that are likely linked to both the caldera and Cretan basin geometries. In winter, the caldera witnesses sudden cooling events that tilt an instrument towards the Southeast, indicating cold-water influx likely originating from the north-western passage between Thirasia and Oia. We do not obtain evidence of long-term vertical seafloor deformation from the pressure signal, although it may be masked by instrumental drift. However, tilt data suggests a local seafloor tilt event ~1 year after the end of the unrest period which could be consistent with inflation under or near Nea Kameni. Seafloor geodetic data recorded at the bottom of the Santorini caldera illustrates that the oceanographic signature is an important part of the signal, which needs to be considered for monitoring volcanic or geological seafloor deformation in shallow-water and/or nearshore areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show here that CO2 partial pressure (pCO2) and temperature significantly interact on coral physiology. The effects of increased pCO2 and temperature on photosynthesis, respiration and calcification rates were investigated in the scleractinian coral Stylophora pistillata. Cuttings were exposed to temperatures of 25°C or 28°C and to pCO2 values of ca. 460 or 760 muatm for 5 weeks. The contents of chlorophyll c2 and protein remained constant throughout the experiment, while the chlorophyll a content was significantly affected by temperature, and was higher under the 'high-temperature-high-pCO2' condition. The cell-specific density was higher at 'high pCO2' than at 'normal pCO2' (1.7 vs. 1.4). The net photosynthesis normalized per unit protein was affected by both temperature and pCO2, whereas respiration was not affected by the treatments. Calcification decreased by 50% when temperature and pCO2 were both elevated. Calcification under normal temperature did not change in response to an increased pCO2. This is not in agreement with numerous published papers that describe a negative relationship between marine calcification and CO2. The confounding effect of temperature has the potential to explain a large portion of the variability of the relationship between calcification and pCO2 reported in the literature, and warrants a re-evaluation of the projected decrease of marine calcification by the year 2100.