201 resultados para name to Wielkopolska


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonality in biomagnification of persistent organic pollutants (POPs; polychlorinated biphenyls, chlorinated pesticides, and brominated flame retardants) in Arctic marine pelagic food webs was investigated in Kongsfjorden, Svalbard, Norway. Trophic magnification factors (TMFs; average factor change in concentration between two trophic levels) were used to measure food web biomagnification in biota in May, July, and October 2007. Pelagic zooplankton (seven species), fish (five species), and seabirds (two species) were included in the study. For most POP compounds, highest TMFs were found in July and lowest were in May. Seasonally changing TMFs were a result of seasonally changing POP concentrations and the d15N-derived trophic positions of the species included in the food web. These seasonal differences in TMFs were independent of inclusion/exclusion of organisms based on physiology (i.e., warm- versus cold-blooded organisms) in the food web. The higher TMFs in July, when the food web consisted of a higher degree of boreal species, suggest that future warming of the Arctic and increased invasion by boreal species can result in increased food web magnification. Knowledge of the seasonal variation in POP biomagnification is a prerequisite for understanding changes in POP biomagnification caused by climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The seismic data were acquired north of the Knipovich Ridge on the western Svalbard margin during cruise MSM21/4. They were recorded using a Geometrics GeoEel streamer of either 120 channels (profiles p100-p208) or 88 channels (profiles p300-p805) with a group spacing of 1.56 m and a sampling rate of 2 kHz. A GI-Gun (2×1.7 l) with a main frequency of ~150 Hz was used as a source and operated at a shot interval of 6-8 s. Processing of profiles p100-p208 and p600-p805: Positions for each channel were calculated by backtracking along the profiles from the GI-Gun GPS positions. The shot gathers were analyzed for abnormal amplitudes below the seafloor reflection by comparing neighboring traces in different frequency bands within sliding time windows. To suppress surface-generated water noise, a tau-p filter was applied in the shot gather domain. Common mid-point (CMP) profiles were then generated through crooked-line binning with a CMP spacing of 1.5625 m. A zero-phase band-pass filter with corner frequencies of 60 Hz and 360 Hz was applied to the data. Based on regional velocity information from MCS data [Sarkar, 2012], an interpolated and extrapolated 3D interval velocity model was created below the digitized seafloor reflection of the high-resolution streamer data. This velocity model was used to apply a CMP stack and an amplitude-preserving Kirchhoff post-stack time migration. Processing of profiles p400-p500: Data were sampled at 0.5 ms and sorted into common midpoint (CMP) domain with a bin spacing of 5 m. Normal move out correction was carried out with a velocity of 1500 m s-1 and an Ormsby bandpass filter with corner frequencies at 40, 80, 600 and 1000 Hz was applied. The data were time migrated using the water velocity.