101 resultados para low temperatures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied magnesium:calcium (Mg/Ca) ratios in shells of the deep-sea ostracode genus Krithe from a short interval in the middle Pliocene between 3.29 and 2.97 Ma using deep-sea drilling sites in the North and South Atlantic in order to estimate bottom water temperatures (BWT) during a period of climatic warmth. Results from DSDP and ODP Sites 552A, 610A, 607, 658A, 659A, 661A and 704 for the period Ma reveal both depth and latitudinal gradients of mean Mg/Ca values. Shallower sites (552A, 610A and 607) have higher mean Mg/Ca ratios (10.3, 9.7, 10.1 mmol/mol) than deeper sites (661A, 6.3 mmol/mol), and high latitude North Atlantic sites (552A, 610 and 607) have higher Mg/Ca ratios than low latitude (658A: 9.8 mmol/mol, 659A: 7.7 mmol/mol, 661A: 6.3 mmol/mol) and Southern Ocean (704: 8.0 mmol/mol) sites. Converting Mg/Ca ratios into estimated temperatures using the calibration of Dwyer et al. (1995) [Dwyer, G.S., Cronin, T.M., Baker, P.A., Raymo, M.E., Buzas, J.S., Corrège, T., 1995. North Atlantic deepwater temperature change during late Pliocene and late Quaternary climatic cycles. Science 270, 1347-1351] suggests that mean middle Pliocene bottom water temperatures at the study sites in the deep Atlantic were about the same as modern temperatures. However, brief pulses of elevated BWT occurred several times between 3.29 and 2.97 Ma in both the North and South Atlantic Ocean suggesting short-term changes in deep ocean circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We deployed autonomous temperature sensors at black smoker chimneys, cracks, and diffuse flow areas at the Lucky Strike hydrothermal field (Mid-Atlantic Ridge, ~37°17'N) between summer 2009 and summer 2012 and contemporaneously measured tidal pressures and currents as part of the long-term MoMAR experiment to monitor hydrothermal activity. We classify the temperature data according to the hydrogeologic setting of the measurement sites: a high-temperature regime (>190°C) representing discharge of essentially unmixed, primary hydrothermal fluids through chimneys, an intermediate-temperature regime (10-100°C) associated with mixing of primary fluids with cold pore fluids discharging through cracks, and a low-temperature regime (<10°C) associated with a thermal boundary layer forming over bacterial mats associated with diffuse outflow of warm fluids. Temperature records from all the regimes exhibit variations at semi-diurnal tidal periods, and cross-spectral analyses reveal that high-temperature discharge correlates to tidal pressure while low-temperature discharge correlates to tidal currents. Intermediate-temperature discharge exhibits a transitional behavior correlating to both tidal pressure and currents. Episodic perturbations, with transient temperature drops of up to ~150°C, which occur in the high-temperature and intermediate-temperature records, are not observed on multiple probes (including nearby probes at the same site), and they are not correlated with microearthquake activity, indicating that the perturbation mechanism is highly localized at the measurement sites within the hydrothermal structures. The average temperature at a given site may increase or decrease at annual time scales, but the average temperature of the hydrothermal field, as a whole, appears to be stable over our 3 year observation period.