191 resultados para glacial advance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies from the subtropical western and eastern Atlantic Ocean, using the 231Pa/230Th ratio as a kinematic proxy for deep water circulation, provided compelling evidence for a strong link between climate and the rate of meridional overturning circulation (MOC) over the last deglaciation. In this study, we present a compilation of existing and new sedimentary 231Pa/230Th records from North Atlantic cores between 1710 and 4550 m water depth. Comparing sedimentary 231Pa/230Th from different depths provides new insights into the evolution of the geometry and rate of deep water formation in the North Atlantic during the last 20,000 years. The 231Pa/230Th ratio measured in upper Holocene sediments indicates slow water renewal above ?2500 m and rapid flushing below, consistent with our understanding of modern circulation. In contrast, during the Last Glacial Maximum (LGM), Glacial North Atlantic Intermediate Water (GNAIW) drove a rapid overturning circulation to a depth of at least ?3000 m depth. Below ~4000 m, water renewal was much slower than today. At the onset of Heinrich event 1, transport by the overturning circulation declined at all depths. GNAIW shoaled above 3000 m and significantly weakened but did not totally shut down. During the Bølling-Allerød (BA) that followed, water renewal rates further decreased above 2000 m but increased below. Our results suggest for the first time that ocean circulation during that period was quite distinct from the modern circulation mode, with a comparatively higher renewal rate above 3000 m and a lower renewal rate below in a pattern similar to the LGM but less accentuated. MOC during the Younger Dryas appears very similar to BA down to 2000 m and slightly slower below.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen isotope measurements have been made in foraminifera from over 60 deep-sea sediment cores. Taken together with the oxygen isotope measurements published by Emiliani from Caribbean and Equatorial Atlantic cores, this comprises a unique body of stratigraphic data covering most of the important areas of calcareous sediment over the whole world ocean. The oxygen isotopic composition of foraminifera from cores of Late Pleistocene sediment varies in a similar manner in nearly all areas; the variations reflect changes in the oxygen isotopic composition of the ocean. The oceans are mixed in about 1 ka so that ocean isotopic changes, resulting from fluctuations in the quantity of ice stored on the continents, must have occurred almost synchronously in all regions. Thus the oxygen isotope record provides an excellent means of stratigraphic correlation. Cores accumulated at rates of over about 5 cm/ka provide records of oxygen isotopic composition change that are almost unaffected by post-depositional mixing of the sediment. Thus they preserve a detailed record of the advance and retreat of the ice masses in the northern hemisphere, and provide a unique source of information for the study of ice-sheet dynamics.