248 resultados para dome height
Resumo:
Snow height was measured by the Snow Depth Buoy 2015S22, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-03-01 and 2015-05-06 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
Snow height was measured by the Snow Depth Buoy 2015S26, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-01-24 and 2015-02-21 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
During the summer of 2004, the front area of the Jakobshavn Isbræ was monitored using a geodetic-photogrammetric survey with temporarily coincident precise observations of local ocean tides in the Disko Bay close to Ilulissat. The geodetic and photogrammetric observations were conducted at the southern margin of the glacier front. The largest observed horizontal flow velocities are in the central part of the front with values up to 45 m/d. This is a factor of 2 greater than the average velocities at the front area observed in the last century. Our new observations confirm previous estimates of an acceleration of glacier flow during the last decade. The photogrammetric survey provided flow trajectories for 4000 surface points with a time resolution of 30 min. These flow trajectories were used to compare the vertical motion of the glacier with the observed tides. The existence of a free-floating glacier tongue in 2004 was confirmed by these data. However, it occupied only a small belt, of at most a few 100 m width, in the central part of the glacier front. Horizontal motion did not appear to depend on the tidal phase, unlike some of the fast-moving ice streams of West Antarctica.
Resumo:
Snow height was measured by the Snow Depth Buoy 2015S18, an autonomous platform, drifting on Antarctic sea ice, deployed during POLARSTERN cruise ANT-XXX/2 (PS89). The resulting time series describes the evolution of snow depth as a function of place and time between 2015-01-03 and 2015-01-18 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
Coastal communities around the world face increasing risk from flooding as a result of rising sea level, increasing storminess, and land subsidence. Salt marshes can act as natural buffer zones, providing protection from waves during storms. However, the effectiveness of marshes in protecting the coastline during extreme events when water levels and waves are highest is poorly understood. Here, we experimentally assess wave dissipation under storm surge conditions in a 300-m-long wave flume that contains a transplanted section of natural salt marsh. We find that the presence of marsh vegetation causes considerable wave attenuation, even when water levels and waves are high. From a comparison with experiments without vegetation, we estimate that up to 60% of observed wave reduction is attributed to vegetation. We also find that although waves progressively flatten and break vegetation stems and thereby reduce dissipation, the marsh substrate remained remarkably stable and resistant to surface erosion under all conditions.The effectiveness of storm wave dissipation and the resilience of tidal marshes even at extreme conditions suggest that salt marsh ecosystems can be a valuable component of coastal protection schemes.
Resumo:
Antarctica is a continent with a strong character. High wind speeds, very low temperatures and heavy snow storms. All these parameters are well known due to observations and measurements, but precipitation measurements are still rare because the number of manned stations is very limited in Antarctica. In such a polar snow region many wind driven phenomena associated with snow fall exist like snow drift, blowing snow or sastrugi. Snow drift is defined as a layer of snow formed by the wind during a snowstorm. The horizontal visibility is below eye level. Blowing snow is specified as an ensemble of snow particles raised by the wind to moderate or great heights above the ground; the horizontal visibility at eye level is generally very poor (National Snow And Ice Data Center (NSIDC), 2013). Sastrugi are complex, fragile and sharp ridges or grooves formed on land or over sea ice. They arise from wind erosion, saltation of snow particles and deposition. To get more details about these procedures better instruments than the conventional stake array are required. This small report introduces a new measuring technique and therefore offers a never used dataset of snow heights. It is very common to measure the snow height with a stake array in Antarctica (f.e. Neumayer Station, Kohnen Station) but not with a laser beam. Thus the idea was born to install a new instrument in December 2012 at Neumayer Station.
Resumo:
Reconstructions of atmospheric CO2 concentrations based on Antarctic ice cores reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO2 concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere, sediments and atmosphere) constrain variations in the CO2 fluxes between those reservoirs. Here we present a highly resolved atmospheric d13C record for the past 11,000 years from measurements on atmospheric CO2 trapped in an Antarctic ice core. From mass-balance inverse model calculations performed with a simplified carbon cycle model, we show that the decrease in atmospheric CO2 of about 5 parts per million by volume (p.p.m.v.) and the increase in d13C of about 0.25% during the early Holocene is most probably the result of a combination of carbon uptake of about 290 gigatonnes of carbon by the land biosphere and carbon release from the ocean in response to carbonate compensation of the terrestrial uptake during the termination of the last ice age. The 20 p.p.m.v. increase of atmospheric CO2 and the small decrease in d13C of about 0.05% during the later Holocene can mostly be explained by contributions from carbonate compensation of earlier land-biosphere uptake and coral reef formation, with only a minor contribution from a small decrease of the land-biosphere carbon inventory.