79 resultados para distribution pattern


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Jurassic (hemi)pelagic continental margin deposits drilled at Hole 547B, off the Moroccan coast, reveal striking Tethyan affinity. Analogies concern not only types and gross vertical evolution of facies, but also composition and textures of the fine sediment and the pattern of diagenetic alteration. In this context, the occurrence of the nanno-organism Schizosphaerella Deflandre and Dangeard (sometimes as a conspicuous portion of the fine-grained carbonate fraction) is of particular interest. Schizosphaerella, an incertae sedis taxon, has been widely recorded as a sediment contributor from Tethyan Jurassic deeper-water carbonate facies exposed on land. Because of its extremely long range (Hettangian to early Kimmeridgian), the genus Schizosphaerella (two species currently described, S. punctulata Deflandre and Dangeard and S. astrea Moshkovitz) is obviously not of great biostratigraphic interest. However, it is of interest in sedimentology and petrology. Specifically, Schizosphaerella was often the only component of the initial fine-grained fraction of a sediment that was able to resist diagenetic obliteration. However, alteration of the original skeletal structure did occur to various degrees. Crystal habit and mineralogy of the fundamental skeletal elements, as well as their mode of mutual arrangement in the test wall with the implied high initial porosity of the skeleton (60-70%), appear to be responsible for this outstanding resistance. Moreover, the ability to concentrate within and, in the case of the species S. punctulata, around the skeleton, large amounts of diagenetic calcite also contributed to the resistance. In both species of Schizosphaerella, occlusion of the original skeletal void space during diagenesis appears to have proceeded in an analogous manner, with an initial slight uniform syntaxial enlargement of the basic lamellar skeletal crystallites followed, upon mutual impingement, by uneven accretion of overgrowth cement in the remaining skeletal voids. However, distinctive fabrics are evident according to the different primary test wall architecture. In S. punctulata, intraskeletal cementation is usually followed by the growth of a radially structured crust of bladed to fibrous calcite around the valves. These crusts are interpreted as a product of aggrading neomorphism, associated with mineralogic stabilization of the original, presumably polyphase, sediment. Data from Hole 547B, along with inferences, drawn from the fabric relationships, suggest that the crusts formed and (inferentially) mineralogic stabilization occurred at a relatively early time in the diagenetic history in the shallow burial realm. An enhanced rate of lithification at relatively shallow burial depths and thus the chance for neomorphism to significantly influence the textural evolution of the buried sediment may be related to a lower Mg/Ca concentration ratio in the oceanic system and, hence, in marine pore waters in pre-Late Jurassic times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Desmoscolecida from the continental slope and the deep-sea bottom (59-4354 m) off the Portuguese and Moroccan coasts are described. 18 species were identified: Desmoscolex bathyalis sp. nov., D. chaetalatus sp. nov., D. eftus sp. nov., D. galeatus sp. nov., D. lapilliferus sp. nov., D. longisetosus Timm, 1970, D. lorenzeni sp. nov., D. perspicuus sp. nov., D. pustulatus sp. nov., Quadricoma angulocephala sp. nov., Q. brevichaeta sp. nov., Q. iberica sp. nov., Q. loricatoides sp. nov., Tricoma atlantica sp. nov., T. bathycola sp. nov., T. beata sp. nov., T. incomposita sp. nov., T. meteora sp. nov., T. mauretania sp. nov. 2. The following new terms are proposed: "Desmos" (ring-shaped concretions consisting of secretion and concretion particles), "desmoscolecoid" and "tricomoid" arrangement of the somatic setae, "regelmaessige" (regular), "unregelmaessige" (irregular), "vollstaendige" (complete) and "unvollstaendige" (incomplete) arrangement of somatic seta (variations in the desmoscolecoid arrangement of the somatic setae). The length of the somatic setae is given in the setal pattern. 3. Desmoscolecida identical as to genus and species exhibit no morphological differences even if forthcoming from different bathymetrical zones (deep sea, sublitoral, litoral) or different environments (marin, freshwater, coastal subsoil water, terrestrial environment). 4. Lorenzen's (1969) contention that thearrangement of the somatic setae is more significant for the natural relationships between the different genera of Desmoscolecida than other characteristics is further confirmed. Species with tricomoid arrangement of somatic setae are regarded as primitive, species with desmoscolecoid arrangement of somatic setae are regarded as more advanced. 5. Three new genus are established: Desmogerlachia gen. nov., Desmolorenzenia gen. nov. and Desmofimmia gen. nov. - Protricoma Timm, 1970 is synonymized with Paratricoma Gerlach, 1964 and Protodesmoscolex Timm, 1970 is synonymized with Desmoscolex Claparede,1863. 6. Checklists of all species of the order Desmoscolecida and keys to species of the subfamilies Tricominae and Desmoscolecinae are provided. 7. The following nomenclatorial changes are suggested: Desmogerlachia papillifer (Gerlach, 1956) comb. nov., D .pratensis (Lorenz, 1969) comb. nov., Desmotimmia mirabilis (Timm, 1970) comb. nov., Paratricoma squamosa (Timm, 1970) comb. nov., Desmolorenzenia crassicauda (Timm, 1970) comb. nov., D. desmoscolecoides (Timm, 1970) comb. nov., D. eurycricus (Filipjev, 1922) comb. nov., D. frontalis (Gerlach, 1952) comb. nov., D. hupferi (Steiner, 1916) comb. nov., D. longicauda (Timm, 1970) comb. nov., D. parva (Timm, 1970) comb. nov., D. platycricus (Steiner, 1916) comb. nov., D. viffata (Lorenzen, 1969) comb. nov., Desmoscolex anfarcficos (Timm, 1970) comb. nov.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focussing on heavy-mineral associations in the Laptev-Sea continental margin area and the eastern Arctic Ocean, 129 surface sediment samples, two short and four long gravity cores have been studied. By means of the accessory components, heavy-mineral associations of surface sediment samples from the Laptev-See continental slope allowed the distinction into two different mineralogical provinces, each influenced by fluvial input of the Siberian river Systems. Transport pathways via sea ice from the shallow shelf areas into the Arctic Ocean up to the final ablation areas of the Fram Strait can be reconstructed by heavy-mineral data of surface sediments from the central Arctic Ocean. The shallow shelf of the Laptev Sea seems to be the most important source area for terrigenous material, as indicated by the abundant occurence of amphiboles and clinopyroxenes. Underneath the mixing Zone of the two dominating surface circulation Systems, the Beaufort- Gyre and Transpolar-Drift system, the imprint of the Amerasian shelf regions up to the Fram Strait is detectable because of a characteristical heavy-mineral association dominated by detrital carbonate and opaque minerals. Based On heavy-mineral characteristics of the potential circum-Arctic source areas, sea-ice drift, origin and distribution of ice-rafted material can be reconstructed during the past climatic cycles. Different factors controlling the transport of terrigenous material into the Arctic Ocean. The entrainment of particulate matter is triggered by the sea level, which flooded during highs and lows different regions resulting in the incorporation of sediment from different source areas into the sea ice. Additionally, the fluvial input even at low stands of sea level is responsible for the delivery of material of distinct sources for entrainment into the sea ice. Glacials and interglacials of climate cycles of the last 780 000 years left a characteristical signal in the central Arctic Ocean sediments caused by the ice- rafted material from different sources in the circum-Arctic regions and its change through time. Changes in the heavy-mineral association from an amphibole-dominated into a garnet-epidote-assemblage can be related to climate-related changes in source areas and directions of geostrophic winds, the dominating drive of the sea-ice drift. During Marine Isotope Stage (MIS) 6, the central Arctic Ocean is marked by an heavy-mineral signal, which occurs in recent sediments of the eastern Kara Sea. Its characteristics are high amounts of epidote, garnet and apatite. On the other hand, during the Same time interval a continuous record of Laptev Sea sediments is documented with high contents of amphiboles on the Lomonosov Ridge near the Laptev Sea continental slope. A nearly similar Pattern was detected in MIS 5 and 4. Small-scale glaciations in the Putorana-mountains and the Anabar-shield may have caused changes in the drainage area of the rivers and therefore a change in fluvial input. During MIS 3, the heavy-mineral association of central Arctic sediments show similar patterns than the Holocene mineral assemblage which consists of amphiboles, ortho- and clinopyroxenes with a Laptev Sea source. These minerals are indicating a stable Transpolar-Drift system similar to recent conditions. An extended influence of the Beaufort Gyre is only recognized, when sediment material from the Amerasian shelf areas reached the core location PS2757-718 during Termination Ib. Based On heavy-mineral data from Laptev-Sea continental slope Core PS2458-4 the paleo-sea-ice drift in the Laptev Sea during 14.000 years was reconstructed. During Holocene sea-level rise, the bathymetrically deeper parts of the Western shelf were flooded first. At the beginning of the Atlantic stage, nearly the entire shelf was marine influenced by fully marine conditions and the recent surface circulation was established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fine-fraction (<63 µm) grain-size analyses of 530 samples from Holes 1095A, 1095B, and 1095D allow assessment of the downhole grain-size distribution at Drift 7. A variety of data processing methods, statistical treatment, and display techniques were used to describe this data set. The downhole fine-fraction grain-size distribution documents significant variations in the average grain-size composition and its cyclic pattern, revealed in five prominent intervals: (1) between 0 and 40 meters composite depth (mcd) (0 and 1.3 Ma), (2) between 40 and 80 mcd (1.3 and 2.4 Ma), (3) between 80 and 220 mcd (2.4 and 6 Ma), (4) between 220 and 360 mcd, and (5) below 360 mcd (prior to 8.1 Ma). In an approach designed to characterize depositional processes at Drift 7, we used statistical parameters determined by the method of moments for the sortable silt fraction to distinguish groups in the grainsize data set. We found three distinct grain-size populations and used these for a tentative environmental interpretation. Population 1 is related to a process in which glacially eroded shelf material was redeposited by turbidites with an ice-rafted debris influence. Population 2 is composed of interglacial turbidites. Population 3 is connected to depositional sequence tops linked to bioturbated sections that, in turn, are influenced by contourite currents and pelagic background sedimentation.