91 resultados para climate-vegetation interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare eight pollen records reflecting climatic and environmental change from the tropical Andes. Our analysis focuses on the last 50 ka, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations, and precipitation change. Our analysis focuses on the signature of millennial-scale variability in the tropical Andes, in particular, Heinrich stadials and Greenland interstadials. We identify rapid responses of the tropical vegetation to this climate variability, and relate differences between sites to moisture sources and site sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated changes in tropical climate and vegetation cover associated with abrupt climate change during Heinrich Event 1 (HE1, ca. 17.5 ka BP) using two different global climate models: the University of Victoria Earth System-Climate Model (UVic ESCM) and the Community Climate System Model version 3 (CCSM3). Tropical South American and African pollen records suggest that the cooling of the North Atlantic Ocean during HE1 influenced the tropics through a southward shift of the rain belt. In this study, we simulated the HE1 by applying a freshwater perturbation to the North Atlantic Ocean. The resulting slowdown of the Atlantic Meridional Overturning Circulation was followed by a temperature seesaw between the Northern and Southern Hemispheres, as well as a southward shift of the tropical rain belt. The shift and the response pattern of the tropical vegetation around the Atlantic Ocean were more pronounced in the CCSM3 than in the UVic ESCM simulation. For tropical South America, opposite changes in tree and grass cover were modeled around 10° S in the CCSM3 but not in the UVic ESCM. In tropical Africa, the grass cover increased and the tree cover decreased around 15° N in the UVic ESCM and around 10° N in the CCSM3. In the CCSM3 model, the tree and grass cover in tropical Southeast Asia responded to the abrupt climate change during the HE1, which could not be found in the UVic ESCM. The biome distributions derived from both models corroborate findings from pollen records in southwestern and equatorial western Africa as well as northeastern Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide new evidence on sea surface temperature (SST) variations and paleoceanographic/paleoenvironmental changes over the past 1500 years for the north Aegean Sea (NE Mediterranean). The reconstructions are based on multiproxy analyses, obtained from the high resolution (decadal to multi-decadal) marine record M2 retrieved from the Athos basin. Reconstructed SSTs show an increase from ca. 850 to 950 AD and from ca. 1100 to 1300 AD. A cooling phase of almost 1.5 °C is observed from ca. 1600 AD to 1700 AD. This seems to have been the starting point of a continuous SST warming trend until the end of the reconstructed period, interrupted by two prominent cooling events at 1832 ± 15 AD and 1995 ± 1 AD. Application of an adaptive Kernel smoothing suggests that the current warming in the reconstructed SSTs of the north Aegean might be unprecedented in the context of the past 1500 years. Internal variability in atmospheric/oceanic circulations systems as well as external forcing as solar radiation and volcanic activity could have affected temperature variations in the north Aegean Sea over the past 1500 years. The marked temperature drop of approximately ~2 °C at 1832 ± 15 yr AD could be related to the 1809 ?D 'unknown' and the 1815 AD Tambora volcanic eruptions. Paleoenvironmental proxy-indices of the M2 record show enhanced riverine/continental inputs in the northern Aegean after ca. 1450 AD. The paleoclimatic evidence derived from the M2 record is combined with a socio-environmental study of the history of the north Aegean region. We show that the cultivation of temperature-sensitive crops, i.e. walnut, vine and olive, co-occurred with stable and warmer temperatures, while its end coincided with a significant episode of cooler temperatures. Periods of agricultural growth in Macedonia coincide with periods of warmer and more stable SSTs, but further exploration is required in order to identify the causal links behind the observed phenomena. The Black Death likely caused major changes in agricultural activity in the north Aegean region, as reflected in the pollen data from land sites of Macedonia and the M2 proxy-reconstructions. Finally, we conclude that the early modern peaks in mountain vegetation in the Rhodope and Macedonia highlands, visible also in the M2 record, were very likely climate-driven.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study a radiocarbon-dated pollen record from Lake Kotokel (52°47' N, 108°07' E, 458 m a.s.l.) located in southern Siberia east of Lake Baikal was used to derive quantitative characteristics of regional vegetation and climate from about 15 kyr BP (1 kyr = 1000 cal. yr) until today. Quantitative reconstruction of the late glacial vegetation and climate dynamics suggests that open steppe and tundra communities predominated in the study area prior to ca. 13.5 kyr BP and again during the Younger Dryas interval, between 12.8 and 11.6 kyr BP. The pollen-based climate reconstruction suggests lower-than-present mean January (~ -38 °C) and July (~ 12 °C) temperatures and annual precipitation (~ 270-300 mm) values during these time intervals. Boreal woodland replaced the primarily open landscape around Kotokel three times at about 14.8-14.7 kyr BP, during the Allerød Interstadial between 13.3-12.8 kyr BP and with the onset of the Holocene interglacial between 11.5 and 10.5 kyr BP, presumably in response to a noticeable increase in precipitation, and in July and January temperatures. The maximal spread of the boreal forest (taiga) communities in the region is associated with a warmer and wetter-than-present climate (Tw ~ 17-18 °C, Tc ~ -19 °C, Pann ~ 500-550 mm) that occurred ca. 10.8-7.3 kyr BP. During this time interval woody vegetation covered more than 50 % of the area within a 21x21 km window around the lake. The pollen-based best modern analogue reconstruction suggests a decrease in woody cover percentages and in all climatic variables about 7-6.5 kyr BP. Our results demonstrate a gradual decrease in precipitation and mean January temperature towards their present-day values in the region around Lake Kotokel since that time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Holocene sediment record of Lake Tiefer See exhibits striking alternations between well-varved and non-varved intervals. Here we present a high resolution multi-proxy record for the past ~6000 years and discuss possible causes for the observed sediment variability. This approach comprises of microfacies, geochemical and microfossil analyses as well as of a multiple dating concept including varve counting, tephrochronology and radiocarbon dating. Four periods of predominantly well-varved sediment were identified at 6000-3950 cal. a BP, 3100-2850 cal. a BP, 2100-750 cal. a BP and AD 1924-present. Except of sub-recent varve formation, these periods are considered to reflect reduced lake circulation and consequently, stronger anoxic bottom water conditions. In contrast, intercalated intervals of poor varve preservation or even extensively mixed non-varved sediments indicate strengthened lake circulation. Sub-recent varve formation since AD 1924 is, in addition to natural forcing, influenced by enhanced lake productivity due to modern anthropogenic eutrophication. The general increase in periods of intensified lake circulation in Lake Tiefer See since ~4000 cal. a BP presumably is caused by gradual changes in Northern Hemisphere orbital forcing, leading to cooler and windier conditions in Central Europe. Superimposed decadal to centennial scale variability of the lake circulation regime likely is the result of additional human-induced changes of the catchment vegetation. The coincidence of major non-varved periods at Lake Tiefer See and intervals of bioturbated sediments in the Baltic Sea implies a broader regional significance of our findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new interglacial pollen sequence from the Döttinger dry maar in the Eifel region of the Rheinish Schield is presented. Palynology is used to correlated to several classical north German Holsteinian sites. The lake sediments reveal the complete interglacial and also 60 m of laminated sediments from the glacial preceding the Holsteinian. The interglacial section indicates limnic conditions in its lower part and telmatic conditions in its upper part with an intermediate episode of peat formation. Ash layers document internsive volcansim during the interglacial in the Eifel region. Some of the north German Holsteinian sites reval spikes of high abundance of Pinus, Beutal and Poaceae and/or setbacks of more demanding taxa during the interglacial, often interpreted as cold events. The Döttingen profile shows similar pattern, but with little response from the thermophilous pollen taxa. In the Döttingen sequence these vegetation 'anomalies' are preceded, or accompanied by phases of active volcanism. The role/interaction of climate and/or volcanism as a likely cause for these vegetation 'anomalies' ist still to be quantified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted in the Swedish sub-Arctic, near Abisko, in order to assess the direction and scale of possible vegetation changes in the alpine-birch forest ecotone. We have re-surveyed shrub, tree and vegetation data at 549 plots grouped into 61 clusters. The plots were originally surveyed in 1997 and re-surveyed in 2010. Our study is unique for the area as we have quantitatively estimated a 19% increase in tree biomass mainly within the existing birch forest. We also found significant increases in the cover of two vegetation types - "birch forest-heath with mosses" and "meadow with low herbs", while the cover of snowbed vegetation decreased significantly. The vegetation changes might be caused by climate, herbivory and past human impact but irrespective of the causes, the observed transition of the vegetation will have substantial effects on the mountain ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time series of terrigenous source elements (Al, K, Ti, Zr) from core GeoB4901-8 recovered from the deep-sea fan of the Niger River record variations in riverine sediment discharge over the past 245,000 yr. Although the flux rates of all the elements depend on physical erosion, which is mainly controlled by the extent of vegetation coverage in central Africa, element/Al ratios reflect conditions for chemical weathering in the river basin. Maximum sediment input to the ocean occurs during cold and arid periods, when precipitation intensity and associated freshwater runoff are reduced. High carbonate contents during the same periods indicate that the sediment supply has a positive effect on river-induced marine productivity. In general, variations in the terrestrial signals contain a strong precessional component in tune with changes in low-latitude solar radiation. However, the terrestrial signal lags the insolation signal by several thousand years. K/Al, Ti/Al, and Zr/Al records reveal that African monsoonal precipitation depends on high-latitude forcing. We attribute the shift between insolation cycle and river discharge to the frequently reported nonlinear response of African climate to primary orbital configurations, which may be caused by a complex interaction of the secondary control parameters, such as surface albedo and/or thermohaline circulation.