376 resultados para chloral hydrate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributions of halogens (Cl, Br and I) in interstitial waters from sediments containing methane hydrate and in water of the hydrate itself are presented. High concentrations of halogens do not occur in interstitial waters from sediments that contain gas hydrates. The main reason for their low concentrations is the poverty of organic matter in sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ODP Leg 204, which drilled at Hydrate Ridge, provides unique insights into the fluid regime of an accretionary complex and delineates specific sub-seafloor pathways for fluid transport. Compaction and dewatering due to smectite-illite transition increase with distance from the toe of the accretionary prism and bring up fluids from deep within the accretionary complex to sampled depths (<= 600 mbsf). These fluids have a distinctly non-radiogenic strontium isotope signature indicating reaction with the oceanic basement. Boron isotopes are also consistent with a deep fluid source that has been modified by desorption of heavy boron as clay minerals change from smectite to illite. One of three major horizons serves as conduit for the transport of mainly fluid. Our results enable us to evaluate fluid migration pathways that play important roles on massive gas hydrate accumulations and seepage of methane-rich fluids on southern Hydrate Ridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sediments of Hydrate Ridge/Cascadia margin contain extensive amounts of gas hydrate. A total of 57 sediment samples including gas hydrate were preserved in liquid nitrogen and have been imaged using computerized tomography to visualize hydrate distribution and shape. The analysis gives evidence that gas hydrate in vein and veinlet structures is the predominant shape in the deeper gas hydrate stability zone with dipping angles from 30° to 90°(vertical).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrate Ridge off the coast of Oregon, USA, is a prime example for gas hydrate occurrences in active margin settings. It is part of the Cascadia Margin and was the focus of Ocean Drilling Program (ODP) Leg 204, which successfully recovered fluids from nine sites from the southern part of the ridge. Iodide concentrations in pore fluids associated with gas hydrates are strongly enhanced, by factors up to 5000 compared to seawater, which allows the use of this biophilic element as tracer for organic source regions. We applied the cosmogenic isotope 129I (T1/2=15.7 Ma) system to determine the age of the organic source formation responsible for the iodide enrichment. In all sites at ODP Leg 204, 129I/I ratios were found to decrease with depth to values around 250x10**-15, corresponding to minimum ages of 40 Ma, but in several sites, maxima in the 129I/I ratios point to the local addition of young iodide. The results indicate that a large amount of iodide was derived from deep accreted sediments of Eocene age, and that additional source regions provide iodide of Late Miocene age. The presence of old iodide in the pore waters suggests that fluid pathways are open to allow transport over large distances into the gas hydrate fields. The strong correlation between iodide and methane in hydrate fields coupled with the similarity in transport parameters in aqueous solutions suggests that a large fraction of methane in gas hydrates also has old sources and is transported into the present locations from source regions of Eocene age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane hydrates are present in marine seep systems and occur within the gas hydrate stability zone. Very little is known about their crystallite sizes and size distributions because they are notoriously difficult to measure. Crystal size distributions are usually considered as one of the key petrophysical parameters because they influence mechanical properties and possible compositional changes, which may occur with changing environmental conditions. Variations in grain size are relevant for gas substitution in natural hydrates by replacing CH4 with CO2 for the purpose of carbon dioxide sequestration. Here we show that crystallite sizes of gas hydrates from some locations in the Indian Ocean, Gulf of Mexico and Black Sea are in the range of 200-400 µm; larger values were obtained for deeper-buried samples from ODP Leg 204. The crystallite sizes show generally a log-normal distribution and appear to vary sometimes rapidly with location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular and isotopic measurements of gas and water obtained from a gas hydrate at Site 570, DSDP Leg 84, are reported. The hydrate appeared to be Structure I and was composed of a solid framework of water molecules enclosing methane and small amounts of ethane and carbon dioxide. Carbon isotopic values for the hydrate-bound methane, ethane, and carbon dioxide were -41 to about -44, -27, and -2.9 per mil, respectively. The d13C-C1 values are consistent with void gas values that were determined to have a biogenic source. A significant thermogenic source was discounted because of high C1/C2 ratios and because the d13C-CO2 values in these sections were also anomalously heavy (or more positive) isotopically, suggesting that the methane was formed biogenically by reduction of heavy CO2 . The isotopically heavy hydrate d13C-C2 is also similar to void gas isotopic compositions and is either a result of low-temperature diagenesis producing heavy C2 in these immature sediment sections or upward migration of deeper thermogenic gas. The salinity of the hydrate water was 2.6 per mil with dDH2O and d18OH2O values of +1 and +2.2 per mil, respectively.