80 resultados para assimilation window


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rate of CO2 assimilation was determined above the Broken Spur and TAG active hydrothermal fields for three main ecosystems: (1) hydrothermal vents; (2) 300 m near-bottom layer of plume water; and (3) bottom sediments. In water samples from warm (40-45°C) vents assimilation rates were maximal and reached 2.82-3.76 µg C/l/day. In plume waters CO2 assimilation rates ranged from 0.38 to 0.65 µg C/l/day. In bottom sediments CO2 assimilation rates varied from 0.8 to 28.0 µg C/l/day, rising up to 56 mg C/kg/day near shrimp swarms. In the most active plume zone of the long-living TAG field bacterial production of organic matter (OM) from carbonic is up to 170 mg C/m**2/day); production of autotrophic process of bacterial chemosynthesis reaches about 90% (156 mg C/m**2/day). Thus, chemosynthetic production of OM in September-October is almost equal to that of photosynthetic production in the oceanic region. Bacterial production of OM above the Broken Spur hydrothermal field is one order lower and reaches only 20 mg C/m**2/day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron stable isotope signatures (d56Fe) in hemolymph (bivalve blood) of the Antarctic bivalve Laternula elliptica were analyzed by Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) to test whether the isotopic fingerprint can be tracked back to the predominant sources of the assimilated Fe. An earlier investigation of Fe concentrations in L. elliptica hemolymph suggested that an assimilation of reactive and bioavailable Fe (oxyhydr)oxide particles (i.e. ferrihydrite), precipitated from pore water Fe around the benthic boundary, is responsible for the high Fe concentration in L. elliptica (Poigner et al., 2013, doi:10.1016/j.ecss.2013.10.027). At two stations in Potter Cove (King George Island, Antarctica) bivalve hemolymph showed mean d56Fe values of -1.19 ± 0.34 per mil and -1.04 ± 0.39 per mil, respectively, which is between 0.5 per mil and 0.85 per mil lighter than the pool of easily reducible Fe (oxyhydr)oxides of the surface sediments (-0.3 per mil to -0.6 per mil). This is in agreement with the enrichment of lighter Fe isotopes at higher trophic levels, resulting from the preferential assimilation of light isotopes from nutrition. Nevertheless, d56Fe hemolymph values from both stations showed a high variability, ranging between -0.21 per mil (value close to unaltered/primary Fe(oxyhydr)oxide minerals) and -1.91 per mil (typical for pore water Fe or diagenetic Fe precipitates), which we interpret as a "mixed" d56Fe signature caused by Fe assimilation from different sources with varying Fe contents and d56Fe values. Furthermore, mass dependent Fe fractionation related to physiological processes within the bivalve cannot be ruled out. This is the first study addressing the potential of Fe isotopes for tracing back food sources of bivalves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the study, we establish centennial records of anthropogenic lead pollution at different locations in the North Atlantic (Iceland, USA, and Europe) by means of lead deposited in shells of the long-lived bivalve Arctica islandica. Due to local oceanographic and geological conditions we conclude that the lead concentrations in the Icelandic shell reflect natural influxes of lead into Icelandic waters. In comparison, the lead profile of the US shell is clearly driven by anthropogenic lead emissions transported from the continent to the ocean by westerly surface winds. Lead concentrations in the European North Sea shell, in contrast, are dominantly driven by local lead sources resulting in a much less conspicuous 1970s gasoline lead peak. In conclusion, the lead profiles of the three shells are driven by different influxes of lead, and yet, all support the applicability of Pb/Ca analyses of A. islandica shells to reconstruct location specific anthropogenic lead pollution.