98 resultados para algorithmic skeletons
Resumo:
In the Mediterranean Sea, infralittoral and circalittoral rocky bottoms (from 15 to 120 m) are characterized by a biogenic habitat, named "coralligenous", formed by the concretion of calcareous organisms, mainly algal thalli, and- to a lesser extent- by animal skeletons. This complex habitat is inhabited by a rich fauna that belongs to different taxonomic groups. Sponges, bryozoans, cnidarians and ascidians are the most common sessile organisms that inhabit the area while crustacean and molluscs are the common mobile organisms. Little information on the diversity of the molluscs that thrive in the coralligenous habitat is known while this information is highly important for biodiversity management purposes. After thoroughly studying the available and accessible published literature, a database for the molluscs of the coralligenous habitat has been designed and implemented for the collection and management of this information. From its index compilation more than 511 species of molluscs have been recorded so far from the coralligenous formations, the majority of which belongs to the class Gastropoda (357 sp.) followed by the Bivalvia (137 sp.), Polyplacophora (14 sp.), Cephalopoda (2 sp.) and Scaphopoda (1 sp.). Among these, the gastropod Luria lurida (Linnaeus, 1758) and Charonia lampas (Linnaeus, 1758), the endemic bivalve Pinna nobilis Linnaeus, 1758 and the endolithic bivalve Lithophaga lithophaga (Linnaeus, 1758), are protected by international conventions.
Resumo:
The influence of biogenic opal sediment input (mainly diatom skeletons) on the fluorine budget of marine sediments will be shown for 24 sampling stations of the antarctic regions of Bransfield Strait, Powell Basin, South Orkney Plateau and northwestern Weddell Sea. 4 bulk samples, one from each sedimentation area, contain 9 to 28 wt.-% of biogenic opal , the clay fraction of the 24 samples investigated have 2 to 82 wt.-%. The fluorine concentration in the amorphous biogenic component is 15 ppm. 300 to 800 ppm of fluorine were measured in the clay fractions, 330 to 920 ppm in their lithogenic components. Biogenic opal causes a decrease in fluorine concentration of the sediment by a considerable amount: 6 to 56 % relative to the clay fraction, due to the proportions involved. Biogenic opal is therefore taken into account as a 'diluting' factor for the fluorine budget in marine sediments.
Resumo:
Leg 90 recovered approximately 3705 m of core at eight sites lying at middle bathyal depths (1000-2200 m) (Sites 587 to 594) in a traverse from subtropical to subantarctic latitudes in the southwest Pacific region, chiefly on Lord Howe Rise in the Tasman Sea. This chapter summarizes some preliminary lithostratigraphic results of the leg and includes data from Site 586, drilled during DSDP Leg 89 on the Ontong-Java Plateau that forms the northern equatorial point of the latitudinal traverse. The lithofacies consist almost exclusively of continuous sections of very pure (>95% CaCO3) pelagic calcareous sediment, typically foraminifer-bearing nannofossil ooze (or chalk) and nannofossil ooze (or chalk), which is mainly of Neogene age but extends back into the Eocene at Sites 588, 592, and 593. Only at Site 594 off southeastern New Zealand is there local development of hemipelagic sediments and several late Neogene unconformities. Increased contents of foraminifers in Leg 90 sediments, notably in the Quaternary interval, correspond to periods of enhanced winnowing by bottom currents. Significant changes in the rates of sediment accumulation and in the character and intensity of sediment bioturbation within and between sites probably reflect changes in calcareous biogenic productivity as a result of fundamental paleoceanographic events in the region during the Neogene. Burial lithification is expressed by a decrease in sediment porosity from about 70 to 45% with depth. Concomitantly, microfossil preservation slowly deteriorates as a result of selective dissolution or recrystallization of some skeletons and the progressive appearance of secondary calcite overgrowths, first about discoasters and sphenoliths, and ultimately on portions of coccoliths. The ooze/chalk transition occurs at about 270 m sub-bottom depth at each of the northern sites (Sites 586 to 592) but is delayed until about twice this depth at the two southern sites (Sites 593 and 594). A possible explanation for this difference between geographic areas is the paucity of discoasters and sphenoliths at the southern sites; these nannofossil elements provide ideal nucleation sites for calcite overgrowths. Toward the bottom of some holes, dissolution seams and flasers appear in recrystallized chalks. The very minor terrigenous fraction of the sediment consists of silt- through clay-sized quartz, feldspar, mica, and clay minerals (smectite, illite, kaolinite, and chlorite), supplied as eolian dust from the Australian continent and by wind and ocean currents from erosion on South Island, New Zealand. Changes in the mass accumulation rates of terrigenous sediment and in clay mineral assemblages through time are related to various external controls, such as the continued northward drift of the Indo-Australian Plate, the development of Antarctic ice sheets, the increased desertification of the Australian continent after 14 m.y. ago, and the progressive increase in tectonic relief of New Zealand through the late Cenozoic. Disseminated glass shards and (altered) tephra layers occur in Leg 90 cores. They were derived from major silicic eruptions in North Island, New Zealand, and from basic to intermediate explosive volcanism along the Melanesian island chains. The tephrostratigraphic record suggests episodes of increased volcanicity in the southwest Pacific centered near 17, 13, 10, 5 and 1 m.y. ago, especially in the middle and early late Miocene. In addition, submarine basaltic volcanism was widespread in the southeast Tasman Sea around the Eocene/Oligocene boundary, possibly related to the propagation of the Southeast Indian Ridge through western New Zealand as a continental rift system.
Resumo:
Radiolarian-based paleoceanographic reconstructions generally use the abundance of selected radiolarian species. However, the recent focus on the opal flux and the development of isotope measurements in biogenic opal and the organic matter embedded in it demands a better knowledge of the origin of the opal. We present here an estimation of the opal content of the skeleton of 63 radiolarian species from two sites in the Southern Ocean. The skeletons are modelled as associations of simple geometrical shapes, and the volume thus obtained is combined with opal density to obtain the amount of opal. These data are, thus, used to determine the most important opal carriers in the radiolarian assemblage in both cores.
Resumo:
The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments1. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange2. The present rise in atmospheric CO2 levels3 causes significant changes in surface ocean pH and carbonate chemistry4. Such changes have been shown to slow down calcification in corals and coralline macroalgae5,6, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Ocean acidification (OA) threatens the existence of coral reefs by slowing the rate of calcium carbonate (CaCO3) production of framework-building corals thus reducing the amount of CaCO3 the reef can produce to counteract natural dissolution. Some evidence exists to suggest that elevated levels of dissolved inorganic nutrients can reduce the impact of OA on coral calcification. Here, we investigated the potential for enhanced energetic status of juvenile corals, achieved via heterotrophic feeding, to modulate the negative impact of OA on calcification. Larvae of the common Atlantic golf ball coral, Favia fragum, were collected and reared for 3 weeks under ambient (421 µatm) or significantly elevated (1,311 µatm) CO2 conditions. The metamorphosed, zooxanthellate spat were either fed brine shrimp (i.e., received nutrition from photosynthesis plus heterotrophy) or not fed (i.e., primarily autotrophic). Regardless of CO2 condition, the skeletons of fed corals exhibited accelerated development of septal cycles and were larger than those of unfed corals. At each CO2 level, fed corals accreted more CaCO3 than unfed corals, and fed corals reared under 1,311 µatm CO2 accreted as much CaCO3 as unfed corals reared under ambient CO2. However, feeding did not alter the sensitivity of calcification to increased CO2; Delta calcification/Delta Omega was comparable for fed and unfed corals. Our results suggest that calcification rates of nutritionally replete juvenile corals will decline as OA intensifies over the course of this century. Critically, however, such corals could maintain higher rates of skeletal growth and CaCO3 production under OA than those in nutritionally limited environments.
Resumo:
Atmospheric carbon dioxide (pCO2) has risen from approximately 280 to 400 ppm since the Industrial Revolution, due mainly to the combustion of fossil fuels, deforestation, and cement production. It is predicted to reach as high as 900 ppm by the end of this century. Ocean acidification resulting from the release of anthropogenic CO2 has been shown to impair the ability of some marine calcifiers to build their shells and skeletons. Here, we present the results of ocean acidification experiments designed to assess the effects of an increase in atmospheric pCO2 from ca. 448 to 827 ppm on calcification rates of the tropical urchin Echinometra viridis. Experiments were conducted under the urchin's winter (20 °C) and summer (30 °C) water temperatures in order to identify seasonal differences in the urchin's response to ocean acidification. The experiments reveal that calcification rates decreased for urchins reared under elevated pCO2, with the decline being more pronounced under wintertime temperatures than under summertime temperatures. These results indicate that the urchin E. viridis will be negatively impacted by CO2-induced ocean acidification that is predicted to occur by the end of this century. These results also suggest that impact of CO2-induced ocean acidification on urchin calcification will be more severe in the winter and in cooler waters.