308 resultados para YTTRIUM SILICATES
Resumo:
Chemical and X-ray analyses were performed on the fifteen manganese nodules collected from the Pacific Ocean floor. The results were discussed compared with the previous data on the manganese nodules. Minerals were found to be todorokite, delta-MnO2 and other silicates, montmorillonite, illite, phillipsite and alpha-Si02. Average composition shows that copper is concentrated on the deep sea nodules more than the shallow ones, and that the todorokite rich nodules contain more copper and nickel than the delta-MnO2 rich ones. The analyses of fresh water iron-manganese precipitates by bacterial activity suggest that biological process is one of the important factors on the genesis of the sedimentary iron-manganese deposits, in¬cluding the manganese nodule.
Resumo:
We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.
Resumo:
Basalt recovered beneath Jurassic sediments in the western Atlantic at Deep Sea Drilling Project sites 100 and 105 of leg 11 has petrographic features characteristic of water-quenched basalt extruded along modern ocean ridges. Site 100 basalt appears to represent two or three massive cooling units, and an extrusive emplacement is probable. Site 105 basalt is less altered and appears to be a compositionally homogeneous pillow lava sequence related to a single eruptive episode. Although the leg 11 basalts are much more closely related in time to the Triassic lavas and intrusives of eastern continental North America, their geochemical features are closely comparable to those of modern Mid-Atlantic Ridge basalts unrelated to postulated "mantle plume" activity. Projection of leg 11 sites back along accepted spreading "flow lines" to their presumed points of origin shows that these origins are also outside the influence of modern" plume" activity. Thus, these oldest Atlantic seafloor basalts provide no information on the time of initiation of these "plumes". The Triassic continental diabases show north to south compositional variations in Rb, Ba, La, and Sr which lie within the range of " plume "-related basalt on the Mid-Atlantic Ridge (20° - 40° N) This suggests that these diabases had mantle sources similar in composition to those beneath the present Mid-Atlantic Ridge. "Plumes" related to deep mantle sources may have contributed to the LIL-element enrichment in the Triassic diabase and may also have been instrumental in initiating the rifting of the North Atlantic. Systematically high values for K and Sr87/Sr86 in the Triassic diabases may reflect superimposed effects of crustal contamination in the Triassic magmas.