487 resultados para Water-rock interaction
Resumo:
Low-temperature hydrothermal alteration of basement from Site 801 was studied through analyses of the mineralogy, chemistry, and oxygen isotopic compositions of the rocks. The more than 100-m section of 170-Ma basement consists of 60 m of tholeiitic basalt separated from the overlying 60 m of alkalic basalts by a >3-m-thick Fe-Si hydrothermal deposit. Four alteration types were distinguished in the basalts: (1) saponite-type (Mg-smectite) rocks are generally slightly altered, exhibiting small increases in H2O, d18O, and oxidation; (2) celadonite-type rocks are also slightly altered, but exhibit uptake of alkalis in addition to hydration and oxidation, reflecting somewhat greater seawater/rock ratios than the saponite type; (3) Al-saponite-type alteration resulted in oxidation, hydration, and alkali and 18O uptake and losses of Ca and Na due to the breakdown of plagioclase and clinopyroxene; and (4) blue-green rocks exhibit the greatest chemical changes, including oxidation, hydration, alkali uptake, and loss of Ca, Na, and Mg due to the complete breakdown of plagioclase and olivine to K-feldspar and phyllosilicates. Saponite- and celadonite-type alteration of the tholeiite section occurred at a normal mid-ocean ridge basalt spreading center at temperatures <20°C. Near- or off-axis intrusion of an alkali basalt magma at depth reinitiated hydrothermal circulation, and the Fe-Si hydrothermal deposit formed from cool (<60°C) distal hydrothermal fluids. Focusing of fluid flow in the rocks immediately underlying the deposit resulted in the extensive alteration of the blue-green rocks at similar temperatures. Al-saponite alteration of the subsequent alkali basalts overlying the deposit occurred at relatively high water/rock ratios as part of the same low-temperature circulation system that formed the hydrothermal deposit. Abundant calcite formed in the rocks during progressive "aging" of the crust during its long history away from the spreading center.
Resumo:
Abyssal peridotite from the 15°20'N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at Sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe(2+)/Fe(3+) ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high a_SiO2 fluids causing the development of smooth, LREE enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.
Resumo:
Gabbros drilled from the shallow (720 m) east wall of the Atlantis II transform on the Southwest Indian Ridge (SWIR; 32°43.40', 57°16.00') provide the most complete record of the stratigraphy and composition of the oceanic lower crust recovered from the ocean basins to date. Lithologies recovered include gabbro, olivine gabbro, troctolite, trondhjemite, and unusual iron-titanium (FeTi) oxide-rich gabbro containing up to 30% FeTi oxides. The plutonic rock sequence represents a tholeiitic fractionation trend ranging from primitive magmas having Mg numbers of 67 to 69 that fractionated troctolites, to highly evolved liquids that crystallized two-pyroxene, FeTi oxide-rich gabbros and, ultimately, trondhjemite. Isotopic compositions of unaltered Leg 118 gabbros are distinct from Indian Ocean mid-ocean ridge basalts (MORB) in having higher 143Nd/144Nd (0.51301-0.51319) and lower 206Pb/204Pb values (17.35-17.67); 87Sr/86Sr values (0.7025-0.7030) overlap those of SWIR basalts, but are generally lower than MORBs from the Southeast Indian Ridge or the Rodrigues Triple Junction. More than one magma composition may have been introduced into the magma chamber during its crystallization history, as suggested by the higher 87Sr/86Sr, 206Pb/204Pb, and lower 143Nd/144Nd values of chromium-rich olivine gabbros from the bottom of Hole 735B. Whole-rock gabbro and plagioclase mineral separate 87Sr/86Sr values are uniformly low (0.7027-0.7030), irrespective of alteration and deformation. By contrast, 87Sr/86Sr values for clinopyroxene (0.7025-0.7039) in the upper half of Hole 735B are higher than coexisting plagioclase and reflect extensive replacement of clinopyroxene by amphibole. Hydrothermal veins and breccias have elevated 87Sr/86Sr values (0.7029-0.7035) and indicate enhanced local introduction of seawater strontium. Oxygen- and hydrogen-isotope results show that secondary amphiboles have uniform dD values of -49 to -54 per mil and felsic hydrothermal veins range from -46 to - 77 per mil. Oxygen-isotope data for secondary amphibole and visibly altered gabbros range to low values (+1.0-+5.5 per mil), and O-isotope disequilibrium between coexisting pyroxene and plagioclase pairs from throughout the stratigraphic column indicates that seawater interacted with much of the gabbro section, but at relatively low water/rock ratios. This is consistent with the persistence of low 87Sr/86Sr values, even in gabbros that were extensively deformed and altered.
Resumo:
Petrography and isotope geochemical characteristics of H, O, S, Sr, and Nd have been described for basalts recovered from Hole 504B during Leg 111 of the Ocean Drilling Program. The petrographic and chemical features of the recovered basalts are similar to those obtained previously (DSDP Legs 69, 70, and 83); they can be divided into phyric (plagioclase-rich) and aphyric (Plagioclase- and clinopyroxene-rich) basalts and show low abundances of TiO2, Na2O, K2O, and Sr. This indicates that the basalts belong to Group D, comprising the majority of the upper section of the Hole 504B. The diopside-rich nature of the clinopyroxene phenocrysts and Ca-rich nature of the Plagioclase phenocrysts are also consistent with the preceding statement. The Sr and Nd isotope systematics (average 87Sr/86Sr = 0.70267 ± 0.00007 and average 143Nd/144Nd = 0.513157 ± 0.000041) indicate that the magma sources are isotopically heterogeneous, although the analyzed samples represent only the lowermost 200-m section of Hole 504B. The rocks were subjected to moderate hydrothermal alteration throughout the section recovered during Leg 111. Alteration is limited to interstices, microfractures, and grain boundaries of the primary minerals, forming chlorite, actinolite, talc, smectite, quartz, sphene, and pyrite. In harmony with the moderate alteration, the following alteration-sensitive parameters show rather limited ranges of variation: H2O = 1.1 ±0.2 wt%, dD = - 38 per mil ± 4 per mil, d180 = 5.4 per mil ± 0.3 per mil, total S = 562 ± 181 ppm, and d34S = 0.8 per mil ± 0.3 per mil. Based on these data, it was estimated that the hydrothermal fluids had dD and d180 values only slightly higher than those of seawater, the water/rock ratios were as low as 0.02-0.2, and the temperature of alteration was 300°-400°C. Sulfur exists predominantly as pyrite and in minor quantities as chalcopyrite. No primary monosulfide was detected. This and the d34S values of pyrite (d34S = 0.8 per mil) suggest that primary pyrrhotite was almost completely oxidized to pyrite by reaction with hydrothermal fluids containing very little sulfate.
Resumo:
Mineralogical and oxygen isotopic analyses of samples from Deep Sea Drilling Project Sites 477, 481, and 477 in the Guaymas Basin indicate the existence of two distinct hydrothermal systems. In the first, at Sites 481 and 478, hot dolerite sills intruded into highly porous hemipelagic siliceous mudstones that were moderately rich in organic matter, thermally altered the adjacent sediments, and expelled hydrothermal pore fluids. The second, at Site 477 and active at present, is most probably caused by a recent igneous intrusion forming a magma chamber at shallow depth. In the first hydrothermal system, the main thermal reactions above and below the sills are dissolution of opal-A and formation of quartz, either directly or through opal-CT; formation of smectite; formation of analcime only above the sills; dissolution and recrystallization of calcite and occasional formation of dolomite or protodolomite. The d18O values of the hydrothermally altered sediments range from 9.9 to 12.2 per mil (SMOW). The d18O values of recrystallized calcites above the first sill complex, Site 481, indicate temperatures of 140° to 170°C. No fluid recharge is required in this system. The thickness of the sill complexes and the sequence and depth of intrusion into the sediment column determine the thickness of the alteration zones, which ranges from 2 or 3 to approximately 50 meters. Generally, the hydrothermally altered zone is thicker above than below the sill. In the second type, the sediments are extensively recrystallized. The characteristic greenschist-facies mineral assemblage of quartz-albite-chlorite-epidote predominates. Considerable amounts of pyrite, pyrrhotite, and sphene are also present. The lowest d18O value of the greenschist facies rocks is 6.6 per mil, and the highest d18O value of the associated pore fluids is +1.38 per mil (SMOW). The paragenesis and the oxygen isotopes of individual phases indicate alteration temperatures of 300 ± 50°C. On the basis of the oxygen isotopes of the solids and associated fluids, it is concluded that recharge of fluids is required. The water/rock ratio in wt.% is moderate, approximately 2/1 to 3/1 - higher than the calculated water/rock ratio of the hydrothermal system at the East Pacific Rise, 21 °N.
Resumo:
Whole-rock basalt samples from the upper half of Deep Sea Drilling Project Hole 504B have oxygen-isotope compositions typical of mid-ocean-ridge basalts which have experienced a moderate degree of low-temperature alteration by sea water. By contrast, d18O values in the lower half of the hole correspond to basalts which have experienced almost no detectable oxygen-isotope alteration. These observations suggest that the overall water/rock ratio was lower in the lower half of the drilled crust. A correlation between d18O values and 87Sr/86Sr ratios suggests that the water/rock ratio, rather than temperature variation, was the main factor determining basalt d18O values. Hydrogen-isotope data appear to be consistent with a low water/rock ratio in the lower part of the crust.
Resumo:
DSDP Hole 504B is the deepest basement hole in the oceanic crust, penetrating through a 571.5 m pillow section, a 209 m lithologic transition zone, and 295 m into a sheeted dike complex. An oxygen isotopic profile through the upper crust at Site 504 is similar to that in many ophiolite complexes, where the extrusive section is enriched in 18O relative to unaltered basalts, and the dike section is variably depleted and enriched. Basalts in the pillow section at Site 504 have delta 18O values generally ranging from +6.1 to +8.5? SMOW (mean= +7.0?), although minor zeolite-rich samples range up to 12.7?. Rocks depleted in 18O appear abruptly at 624 m sub-basement in the lithologic transition from 100% pillows to 100% dikes, coinciding with the appearance of greenschist facies minerals in the rocks. Whole-rock values range to as low as +3.6?, but the mean values for the lithologic transition zone and dike section are +5.8 and +5.4?, respectively. Oxygen and carbon isotopic data for secondary vein minerals combined with the whole rock data provide evidence for the former presence of two distinct circulation systems separated by a relatively sharp boundary at the top of the lithologic transition zone. The pillow section reacted with seawater at low temperatures (near 0°C up to a maximum of around 150°C) and relatively high water/rock mass ratios (10-100); water/rock ratios were greater and conditions were more oxidizing during submarine weathering of the uppermost 320 m than deeper in the pillow section. The transition zone and dikes were altered at much higher temperatures (up to about 350°C) and generally low water/rock mass ratios (~1), and hydrothermal fluids probably contained mantle-derived CO2. Mixing of axial hydrothermal fluids upwelling through the dike section with cooler seawater circulating in the overlying pillow section resulted in a steep temperature gradient (~2.5°C/m) across a 70 m interval at the top of the lithologic transition zone. Progressive reaction during axial hydrothermal metamorphism and later off-axis alteration led to the formation of albite- and Ca-zeolite-rich alteration halos around fractures. This enhanced the effects of cooling and 18O enrichment of fluids, resulting in local increases in delta 18O of rocks which had been previously depleted in 18O during prior axial metamorphism.
Resumo:
Preliminary studies of hydrothermally altered massive basalts formed at the fast-spreading Mendoza Rise and recovered from DSDP Holes 597B and 597C indicate the presence of three secondary mineral assemblages which formed in the following order: (1) trioctahedral chlorite and talc, (2) goethite and smectite, and (3) calcite and celadonite. The sequential precipitation of these mineral assemblages denotes high water:rock ratios and time-varying conditions of temperature (early >200°C to late <30°C) and state of oxidation (early nonoxidative to late oxidative). A decrease in the relative proportion of oxidative mineral assemblages with depth to 70 m in Site 597 basement indicates a zone of oxidative alteration that became shallower with time as the deeper, more constricted fracture systems were filled by secondary mineralization. In this report we present the first results of the K-Ar dating of celadonite formation age; celadonite formation reflects end-stage hydrothermal alteration in Site 597 basement. Three celadonite dates obtained from Site 597 samples include 13.1 ± 0.3 m.y. from 17 m basement depth (Hole 597B), 19.9 ± 0.4 m.y. from 18 m basement depth (Hole 597C), and 19.3 ± 1.6 m.y. from 60 m basement depth (Hole 597C). The age of host rock crystallization (28.6 m.y.) and the K-Ar dates of celadonite formation establish that hydrothermal alteration in the upper 70 m of Site 597 basement continued for at least 10 m.y. and possibly as long as 16 m.y. after basalt crystallization at the ridge crest. Assuming a half-spreading rate of 55 km/m.y., we calculate that hydrothermal circulation was active in shallow basement at a distance of at least 550 km off ridge crest and possibly as far as 1000 km off ridge crest.
Resumo:
This chapter documents the chemical changes produced by hydrothermal alteration of basalts drilled on Leg 83, in Hole 504B. It interprets these chemical changes in terms of mineralogical changes and alteration processes and discusses implications for geochemical cycling. Alteration of Leg 83 basalts is characterized by nonequilibrium and is heterogeneous on a scale of centimeters to tens or hundreds of meters. The basalts exhibit trends toward losses of SiO2, CaO, TiO2; decreases in density; gains of MnO, Na2O, CO2, H2O+ , S; slight gains of MgO; increased oxidation of Fe; and variable changes in A12O3. Some mobility of rare earth elements (REE) also occurred, especially the light REE and Eu. The basalts have lost Ca in excess of Mg + Na gains. Variations in chemical trends are due to differing water/rock ratios, substrate control of secondary mineralogy, and superimposition of greenschist and zeolite facies mineralogies. Zeolitization resulted in uptake of Ca and H2O and losses of Si, Al, and Na. These effects are different from the Na uptake observed in other altered basalts from the seafloor attributed to the zeolite facies and are probably due to higher temperatures of alteration of Leg 83 basalts. Basalts from the transition zone are enriched in Mn, S, and CO2 relative to the pillow and dike sections and contain a metal-sulfide-rich stockwork zone, suggesting that they once were located within or near a hydrothermal upflow zone. Samples from the bottom of the dike section are extensively fractured and recrystallized indicating that alteration was significantly affected by local variations in permeability.
Resumo:
DSDP Hole 504B was drilled into 6 Ma crust, about 200 km south of the Costa Rica Rift, Galapagos Spreading Center, penetrating 1.35 km into a section that can be divided into four zones-Zone I: oxic submarine weathering; Zone II: anoxic alteration; Zones III and IV: hydrothermal alteration to greenschist facies. In Zone III there is intense veining of pillow basalts. Zone IV consists of altered sheeted dikes. Isotopic geochemical signatures in relation to the alteration zones are recorded in Hole 504B, as follows: Zone Depth(m) Average87Sr/86Sr Average delta18O (?) Average deltaD (?) I 275-550 0.7032 7.3 -63 II 550-890 0.7029 6.5 -45 III 890-1050 0.7035 5.6 -31 IV 1050-1350 0.7032 5.5 -36 Alteration temperatures are as low as 10°C in Zones I and II based on oxygen isotope fractionation. Strontium isotopic data indicate that a circulation of seawater is much more restricted in Zone II than in Zone I. Fluid inclusion measurements of vein quartz indicate the alteration temperature was mainly 300 +/- 20°C in Zones III and IV, which is consistent with secondary mineral assemblages. The strontium, oxygen, and hydrogen isotopic compositions of hydrothermal fluids which were responsible for the greenschist facies alteration in Zones III and IV are estimated to be 0.7037, 2?, and 3?, respectively. Strontium and oxygen isotope data indicate that completely altered portions of greenstones and vein minerals were in equilibrium with modified seawater under low water/rock ratios (in weight) of about 1.6. This value is close to that of the end-member hydrothermal fluids issuing at 21°N EPR. Basement rocks are not completely hydrothermally altered. About 32% of the greenstones in Zones III and IV have escaped alteration. Thus 1 g of fresh basalt including the 32% unaltered portion are required in order to make 1 g of end-member solution from fresh seawater in water-rock reactions.
Resumo:
Dolerites sampled from the lower sheeted dikes from Hole 504B during Ocean Drilling Program Legs 137 and 140, between 1562.4 and 2000.4 mbsf, were examined to document the mineralogy, petrography, and mineral parageneses associated with secondary alteration, to constrain the thermal history and composition of hydrothermal fluids. The main methods used were mineral chemical analyses by electron microprobe, X-ray diffraction, and cathodoluminescence microscopy. Temperatures of alteration were estimated on the basis of single and/or coexisting mineral chemistry. Permeability is important in controlling the type and extent of alteration in the studied dike section. At the meter-scale, intervals of weakly altered dolerites containing fresh olivine are interpreted as having experienced restricted exposure to hydrothermal fluids. At the centimeter- or millimeter-scale, alteration patches and extensively altered halos adjacent to veins reflect the permeability related to intergranular primary porosity and cracks. Most of the sheeted dike alteration in this case resulted from non-focused, pervasive fluid-rock interaction. This study confirms and extends the previous model for hydrothermal alteration at Hole 504B: hydrothermal alteration at the ridge axis followed by seawater recharge and off-axis alteration. The major new discoveries, all related to higher temperatures of alteration, are: (1) the presence of hydrothermal plagioclase (An80-95), (2) the presence of deuteric and/or hydrothermal diopside, and (3) the general increasing proportion of amphiboles, and particularly magnesio-hornblende with depth. We propose that the dolerites at Hole 504B were altered in five stages. Stage 1 occurred at high temperatures (less than 500° to 700°C) and involved late-magmatic formation of Na- and Ti-rich diopside, the hydrothermal formation of Na, Ti-poor diopside and the hydrothermal formation of an assemblage of An-rich plagioclase + hornblende. Stage 2 occurred at lower temperatures (250°-320°C) and is characterized by the appearance of actinolite, chlorite, chlorite-smectite, and/or talc (in low permeability zones) and albite. During Stage 3, quartz and epidote precipitated from evolved hydrothermal fluids at temperatures between 310° and 320°C. Anhydrite appeared during Stage 4 and likely precipitated directly from heated seawater. Stage 5 occurred off-axis at low temperatures (250°C) with laumontite and prehnite from evolved fluids.
Resumo:
The Lost City hydrothermal system at the southern Atlantis Massif (Mid-Atlantic Ridge, 30°N) provides a natural laboratory for studying serpentinization processes, the temporal evolution of ultramafic-hosted hydrothermal systems, and alteration conditions during formation and emplacement of an oceanic core complex. Here we present B, O, and Sr isotope data to investigate fluid/rock interaction and mass transfer during detachment faulting and exhumation of lithospheric sequences within the Atlantis Massif. Our data indicate that extensive serpentinization was a seawater-dominated process that occurred predominately at temperatures of 150-250 °C and at high integrated W/R ratios that led to a marked boron enrichment (34-91 ppm). Boron removal from seawater during serpentinization is positively correlated with changes in d11B (11-16 per mil) but shows no correlation with O-isotope composition. Modeling indicates that B concentrations and isotope values of the serpentinites are controlled by transient temperature-pH conditions. In contrast to prior studies, we conclude that low-temperature marine weathering processes are insignificant for boron geochemistry of the Atlantis Massif serpentinites. Talc- and amphibole-rich fault rocks formed within a zone of detachment faulting at temperatures of approximately 270-350 °C and at low W/R ratios. Talc formation in ultramafic domains in the massif was subsequent to an early stage of serpentinization and was controlled by the access of Si-rich fluids derived through seawater-gabbro interactions. Replacement of serpentine by talc resulted in boron loss and significant lowering of d11B values (9-10 per mil), which we model as the product of progressive extraction of boron. Our study provides new constraints on the boron geochemical cycle at oceanic spreading ridges and suggests that serpentinization associated with ultramafic-hosted hydrothermal systems may have important implications for the behavior of boron in subduction zone settings.