324 resultados para VREDEFORT DOME


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice core data from Antarctica provide detailed insights into the characteristics of past climate, atmospheric circulation, as well as changes in the aerosol load of the atmosphere. We present high-resolution records of soluble calcium (Ca2+), non-sea-salt soluble calcium (nssCa2+), and particulate mineral dust aerosol from the East Antarctic Plateau at a depth resolution of 1 cm, spanning the past 800 000 years. Despite the fact that all three parameters are largely dust-derived, the ratio of nssCa2+ to particulate dust is dependent on the particulate dust concentration itself. We used principal component analysis to extract the joint climatic signal and produce a common high-resolution record of dust flux. This new record is used to identify Antarctic warming events during the past eight glacial periods. The phasing of dust flux and CO2 changes during glacial-interglacial transitions reveals that iron fertilization of the Southern Ocean during the past nine glacial terminations was not the dominant factor in the deglacial rise of CO2 concentrations. Rapid changes in dust flux during glacial terminations and Antarctic warming events point to a rapid response of the southern westerly wind belt in the region of southern South American dust sources on changing climate conditions. The clear lead of these dust changes on temperature rise suggests that an atmospheric reorganization occurred in the Southern Hemisphere before the Southern Ocean warmed significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral albedo has been measured at Dome C since December 2012 in the visible and near infrared (400 - 1050 nm) at sub-hourly resolution using a home-made spectral radiometer. Superficial specific surface area (SSA) has been estimated by fitting the observed albedo spectra to the analytical Asymptotic Approximation Radiative Transfer theory (AART). The dataset includes fully-calibrated albedo and SSA that pass several quality checks as described in the companion article. Only data for solar zenith angles less than 75° have been included, which theoretically spans the period October-March. In addition, to correct for residual errors still affecting data after the calibration, especially at the solar zenith angles higher than 60°, we produced a higher quality albedo time-series as follows: In the SSA estimation process described in the companion paper, a scaling coefficient A between the observed albedo and the theoretical model predictions was introduced to cope with these errors. This coefficient thus provides a first order estimate of the residual error. By dividing the albedo by this coefficient, we produced the "scaled fully-calibrated albedo". We strongly recommend to use the latter for most applications because it generally remains in the physical range 0-1. The former albedo is provided for reference to the companion paper and because it does not depend on the SSA estimation process and its underlying assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead isotopic compositions and Pb and Ba concentrations have been measured in ice cores from Law Dome, East Antarctica, covering the past 6500 years. 'Natural' background concentrations of Pb (ab. 0.4 pg/g) and Ba (ab. 1.3 pg/g) are observed until 1884 AD, after which increased Pb concentrations and lowered 206Pb/207Pb ratios indicate the influence of anthropogenic Pb. The isotopic composition of 'natural' Pb varies within the range 206Pb/207Pb=1.20-1.25 and 208Pb/207Pb=2.46-2.50, with an average rock and soil dust Pb contribution of 8-12%. A major pollution event is observed at Law Dome between 1884 and 1908 AD, elevating the Pb concentration four-fold and changing 206Pb/207Pb ratios in the ice to ab. 1.12. Based on Pb isotopic systematics and Pb emission statistics, this is attributed to Pb mined at Broken Hill and smelted at Broken Hill and Port Pirie, Australia. Anthropogenic Pb inputs are at their greatest from 1900 to 1910 and from ab. 1960 to ab. 1980. During the 20th century, Ba concentrations are consistently higher than 'natural' levels and are attributed to increased dust production, suggesting the influence of climate change and/or changes in land coverage with vegetation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the 1996 Programma Nazionale di Ricerche in Antartide-International Trans-Antarctic Scientific Expedition traverse, two firn cores were retrieved from the Talos Dome area (East Antarctica) at elevations of 2316 m (TD, 89 m long) and 2246 m (ST556, 19 m long). Cores were dated by using seasonal variations in non-sea-salt (nss) SO42- concentrations coupled with the recognition of tritium marker level (1965-1966) and nss SO42- spikes due to the most important volcanic events in the past (Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Kuwae 1452, Unknown 1259). The number of annual layers recognized in the TD and ST556 cores was 779 and 97, respectively. The dD record obtained from the TD core has been compared with other East Antarctic isotope ice core records (Dome C EPICA, South Pole, Taylor Dome). These records suggest cooler climate conditions between the middle of 16th and the beginning of 19th centuries, which might be related to the Little Ice Age (LIA) cold period. Because of the high degree of geographical variability, the strongest LIA cooling was not temporally synchronous over East Antarctica, and the analyzed records do not provide a coherent picture for East Antarctica. The accumulation rate record presented for the TD core shows a decrease during part of the LIA followed by an increment of about 11% in accumulation during the 20th century. At the ST556 site, the accumulation rate observed during the 20th century was quite stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A record of Pb isotopic compositions and Pb and Ba concentrations are presented for the EPICA Dome C ice core covering the past 220 ky, indicating the characteristics of dust and volcanic Pb deposition in central East Antarctica. Lead isotopic compositions are also reported in a suite of soil and loess samples from the Southern Hemisphere (Australia, Southern Africa, Southern South America, New Zealand, Antarctica) in order to evaluate the provenance of dust present in Antarctic ice. Lead isotopic compositions in Dome C ice support the contention that Southern South America was an important source of dust in Antarctica during the last two glacial maxima, and furthermore suggest occasional dust contributions from local Antarctic sources. The isotopic signature of Pb in Antarctic ice is altered by the presence of volcanic Pb, inhibiting the evaluation of glacial-interglacial changes in dust sources and the evaluation of Australia as a source of dust to Antarctica. Consequently, an accurate evaluation of the predominant source(s) of Antarctic dust can only be obtained from glacial maxima, when dust-Pb concentrations were greatest. These data confirm that volcanic Pb is present throughout Antarctica and is emitted in a physical phase that is free from Ba, while dust Pb is transported within a matrix containing Ba and other crustal elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.