246 resultados para Trichinella spiralis


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three sites drilled during Leg 122, Site 761 on the Wombat Plateau and Sites 762 and 763 on the Exmouth Plateau, provide a composite Cretaceous section ranging in age from Berriasian to Maestrichtian. Together, these sites contain an apparently complete, expanded Aptian-Maestrichtian record. Consistently occurring and moderately well-preserved nannofossil assemblages allow reasonably high biostratigraphic resolution. Our data indicate that traditional middle and Upper Cretaceous nannofossil biozonations are not entirely applicable in this region. In this investigation, we compare in detail the relative ranges of key Cretaceous nannofossil markers in the eastern Indian Ocean and in sections from Europe and North Africa. We have determined which previously used events are applicable, and which additional markers have biostratigraphic utility in this region. Significant differences in Campanian-Maestrichtian assemblages exist between the more northern Site 761 and Sites 762 and 763. Such differences are surprising, considering that these sites are only separated by 3° of latitude. We interpret them as marking a strong thermal gradient over the Exmouth Plateau region. Other results include the recovery of an expanded Albian-Cenomanian sequence containing a mixture of Austral and Tethyan floras, which will enable correlation of biozonations established for these two realms; the recovery of two condensed but apparently complete Cenomanian-Turonian boundary sections; correlation of Upper Cretaceous calcareous nannofossil biostratigraphy with magneto- and foraminifer stratigraphy; and correlation of portions of the Barrow Group equivalents to the Berriasian and Valanginian stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcareous nannofossils were examined from the 400 cores recovered at 12 sites during Ocean Drilling Program Leg 108 in the eastern equatorial Atlantic Ocean and along the northwest African margin, representing a transect spanning 24° of latitude. Thirty calcareous nannofossil biohorizons were recognized in the Neogene and Quaternary sequences; only Site 661, located in water depths of 3500 m, contains a fossiliferous record older than the Oligocene. At Site 661, a 200-m-thick sequence of Upper Cretaceous sediments yielded Maestrichtian and uppermost Campanian nannofossils, yet a continuous Cretaceous/Tertiary boundary was not recovered. Widespread sediment slumps and turbidites deposited at many sites interrupted the pelagic sedimentation. A careful study of calcareous nannofossil and foraminifer assemblages correlated to paleomagnetic records suggests that "slumped" units at most sites were added as extra sediments to rapidly deposited pelagic sediments, with minor disturbance of the surrounding layers. Nannofossils are generally common to abundant and moderately preserved at all sites except for those located in two upwelling areas, where placoliths are etched and discoasters overgrown. Typical low-latitudinal zonal markers were used during this study, yet some of them were considered to be of little biostratigraphic value because of their inconsistent stratigraphic ranges and low abundances. This is especially apparent for the intervals representing the Miocene/Pliocene and Oligocene/Miocene boundaries. Characteristic nannofossils of cool-water conditions and low discoaster abundances occur at the coastal African upwelling and along the south equatorial divergence sites, signifying a stronger advection of cold waters toward the equator within the Canary and Benguela eastern boundary currents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A virtually complete composite history of Cenozoic pelagic sedimentation was recovered from ODP Sites 738 (62°43' S) and 744 (61°35' S), drilled during Leg 119 on the Kerguelen Plateau. An excellent magnetobiochronologic record was obtained from upper Eocene through Holocene sediments at Site 744, and an expanded lower Paleocene through lower Oligocene sequence was cored at Hole 738. Analysis of the stratigraphic distribution of over 125 planktonic foraminifer taxa from these sites reveals changes in species composition that were strongly influenced by the climatic evolution of Antarctic water masses. Early Paleocene planktonic foraminifer assemblages are nearly identical in species composition to coeval assemblages from low and middle latitude sites, showing the same patterns of post-extinction recovery and taxonomic radiation. Biogeographic isolation, revealed by the absence of tropical keeled species, became apparent by late early Paleocene time. Diversity increased near the Paleocene/Eocene boundary when keeled morozovellids immigrated to the Kerguelen Plateau. Greatest diversity (23 species) was achieved by early Eocene time, corresponding to a Cenozoic warming maximum that has been recognized in lower Eocene deep sea and terrestrial sediments worldwide. A gradual decline in diversity from the late early through middle Eocene, primarily due to the disappearance of acarininids, parallels the record of cooling paleotemperatures in Southern Ocean surface waters. Chiloguembelina-dominated assemblages appeared in the late middle Eocene and persisted through the early Oligocene as Antarctic surface waters became thermally isolated. Late Eocene and early Oligocene assemblages exhibit considerably lower diversity than the older Eocene faunas, and were dominated by chiloguembelinids, subbotinids, and catapsydracids during a time of pronounced climatic cooling and development of continental glaciation on East Antarctica. The small foraminifer Globigerinit? juvenilis replaced chiloguembelinids as the dominant taxon during the late Oligocene. Diversity increased slightly toward the end of the late Oligocene with new appearances of several tenuitellid, globoturborotalitid, and globigerinid species. The trend toward diminishing planktonic foraminifer diversity was renewed during the late early Miocene as siliceous productivity increased in the Antarctic surface waters, culminating with the reduction to nearly monospecific assemblages of Neogloboqu?drin? p?chyderm? that occur in Pliocene-Holocene biosiliceous sediments. An Antarctic Paleogene zonal scheme previously devised for ODP Sites 689 and 690 in the Weddell Sea is used to biostratigraphically subdivide the Kerguelen Plateau sequence. The definition of one Antarctic Paleogene biozone is modified in the present study to facilitate correlation within the southern high latitudes. The ages of 13 late Eoceneearly Miocene datum events are calibrated based on a magnetobiochronologic age model developed for Site 744.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At Deep Sea Drilling Site 384 (J-Anomaly Ridge, Grand Banks Continental Rise, NW Atlantic Ocean) Paleocene nannofossil chalks and oozes (~70 m thick) are unconformably/disconformably underlain (~168 m; upper Maastrichtian) and overlain (~98.7 m; upper lower Eocene) by sediments of comparable lithologies. The chalks are more indurated in stratigraphically higher levels of the Paleocene reflecting increasing amounts of biosiliceous (radiolarians and diatoms) components. This site serves as an excellent location for an integrated calcareous and siliceous microfossil zonal stratigraphy and stable isotope stratigraphy. We report the results of a magnetostratigraphic study which, when incorporated with published magnetostratigraphic results, reveals an essentially complete magnetostratigraphic record spanning the interval from Magnetochron C31n (late Maastrichtian) to C25n (partim) (late Paleocene, Thanetian). Integrated magnetobiochronology and stable isotope stratigraphy support the interpretation of, and constrain the estimated duration of, a short hiatus (~0.9 my) within the younger part of Chron C29r (including the K/P boundary) and an ~6 my hiatus separating upper Paleocene (Magnetozone C25n) and upper lower Eocene (Magnetozone C22r) sediments. Some 30 planktonic foraminiferal datum levels [including the criteria used to denote the Paleocene planktonic foraminiferal (sub)tropical zonal scheme of Berggren and Miller, Micropaleontology 34 (4) (1988) 362-380 and Berggren et al., SEPM Spec. Publ. 54 (1995) 129-212, Geol. Soc. Am. Bull. 107 (11) (1995) 1272-1287], and nearly two dozen calcareous nannoplankton datum levels have been recognized and calibrated to the magnetochronology. Planktonic foraminiferal Subzones P4a and P4b of (upper Paleocene) Zone P4 are emended/redefined based on the discovery of a longer stratigraphic extension of Acarinina subsphaerica (into at last Magnetozone C25n). Stable isotope stratigraphies from benthic foraminifera and fine fraction (<38 µm) carbonate have been calibrated to the biochronology and magnetostratigraphy. A minimum in benthic foraminifer delta13C was reached near the Danian/Selandian boundary (within Chron C26r, planktonic foraminiferal Zone P3a and calcareous nannoplankton Zone NP4) and is followed by the rise to maximum delta13C values in the late Thanetian (near the base of C25n, in Zone P4c and NP9a, respectively) that can be used for global correlation in the Paleocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leg 101 of the Ocean Drilling Program drilled 19 holes at 11 sites to investigate the geology of the Straits of Florida and the northern Bahamas. Drilling at Site 626 indicated that the Gulf Stream has had significant flow through the Straits of Florida for at least the last 24 million years. Winnowed, foraminiferal grainstones and packstones with sparse nannofossil assemblages and the reworking of older nannofossils suggest strong bottom-current activity throughout this interval. Drilling north of Little Bahama Bank and in Exuma Sound documents the growth of platform slopes during the late Cenozoic. Nannofossil biostratigraphy of the upper Cenozoic sediments from the Little Bahama Bank and Exuma Sound slope transects indicates relatively continuous deposition, with only short breaks in the periplatform ooze and/or calciturbidite accumulation during the late Pliocene. These unconformities may be linked to sea-level lowstands. Nannofossil assemblages are generally poorly preserved owing to accelerated diagenesis caused by high aragonite and high magnesium calcite contents of bank-derived material. High rates of influx of bank-derived materials appear to coincide with highstands of sea level. Periplatform sediments are largely limited to the upper Cenozoic at Little Bahama Bank. Pelagic and/or hemipelagic conditions existed during the Late Cretaceous and Paleogene. A relatively complete, continuous section of Oligocene is present in the Little Bahama Bank area, although the rest of the Paleogene is thin. Paleogene material is also present in Northeast Providence Channel, although its thickness is uncertain. A thick upper Campanian chalk sequence with abundant, moderately to well-preserved nannofossils occurs in the Little Bahama Bank area. Hemipelagic nannofossil marls and marly chalks at Little Bahama Bank contain an excellent nannofossil record, which indicates a continuous lowermost to middle Cenomanian sequence overlying the upper Albian drowned platform. These hemipelagic sediments are significantly younger than the organic-rich, middle Albian limestones in Northeast Providence Channel. The latter indicate that a deep-water channel was already well established by the middle Albian.