80 resultados para Transition intensity parameters
Resumo:
In this paper, we present a rock magnetic data set produced for sediments from Hydrate Ridge recovered during Ocean Drilling Program Leg 204. Our data set is based on several artificially induced magnetic properties that can be used as a diagnostic for the presence of magnetic iron sulfides. The occurrence of magnetic iron sulfides within the gas hydrate stability zone in locations where gas hydrates are present seems to confirm previous interpretations linking formation of such minerals with generation of gas hydrate. Magnetic iron sulfides are also found at positions deeper than the gas hydrate stability zone. We suggest that these positions, which include intervals located just below the bottom-simulating reflector and also at deeper positions, may mark the former presence of gas hydrates that have been later dissociated as the gas hydrate stability zone moved upward through time. Detailed characterization of the magnetic iron sulfide mineralogy and comparison with sedimentological and geochemical data will be attempted for better determining the significance of magnetic iron sulfides in Hydrate Ridge sediments and their possible applications in the study of gas hydrates.
Resumo:
Leg 90 recovered approximately 3705 m of core at eight sites lying at middle bathyal depths (1000-2200 m) (Sites 587 to 594) in a traverse from subtropical to subantarctic latitudes in the southwest Pacific region, chiefly on Lord Howe Rise in the Tasman Sea. This chapter summarizes some preliminary lithostratigraphic results of the leg and includes data from Site 586, drilled during DSDP Leg 89 on the Ontong-Java Plateau that forms the northern equatorial point of the latitudinal traverse. The lithofacies consist almost exclusively of continuous sections of very pure (>95% CaCO3) pelagic calcareous sediment, typically foraminifer-bearing nannofossil ooze (or chalk) and nannofossil ooze (or chalk), which is mainly of Neogene age but extends back into the Eocene at Sites 588, 592, and 593. Only at Site 594 off southeastern New Zealand is there local development of hemipelagic sediments and several late Neogene unconformities. Increased contents of foraminifers in Leg 90 sediments, notably in the Quaternary interval, correspond to periods of enhanced winnowing by bottom currents. Significant changes in the rates of sediment accumulation and in the character and intensity of sediment bioturbation within and between sites probably reflect changes in calcareous biogenic productivity as a result of fundamental paleoceanographic events in the region during the Neogene. Burial lithification is expressed by a decrease in sediment porosity from about 70 to 45% with depth. Concomitantly, microfossil preservation slowly deteriorates as a result of selective dissolution or recrystallization of some skeletons and the progressive appearance of secondary calcite overgrowths, first about discoasters and sphenoliths, and ultimately on portions of coccoliths. The ooze/chalk transition occurs at about 270 m sub-bottom depth at each of the northern sites (Sites 586 to 592) but is delayed until about twice this depth at the two southern sites (Sites 593 and 594). A possible explanation for this difference between geographic areas is the paucity of discoasters and sphenoliths at the southern sites; these nannofossil elements provide ideal nucleation sites for calcite overgrowths. Toward the bottom of some holes, dissolution seams and flasers appear in recrystallized chalks. The very minor terrigenous fraction of the sediment consists of silt- through clay-sized quartz, feldspar, mica, and clay minerals (smectite, illite, kaolinite, and chlorite), supplied as eolian dust from the Australian continent and by wind and ocean currents from erosion on South Island, New Zealand. Changes in the mass accumulation rates of terrigenous sediment and in clay mineral assemblages through time are related to various external controls, such as the continued northward drift of the Indo-Australian Plate, the development of Antarctic ice sheets, the increased desertification of the Australian continent after 14 m.y. ago, and the progressive increase in tectonic relief of New Zealand through the late Cenozoic. Disseminated glass shards and (altered) tephra layers occur in Leg 90 cores. They were derived from major silicic eruptions in North Island, New Zealand, and from basic to intermediate explosive volcanism along the Melanesian island chains. The tephrostratigraphic record suggests episodes of increased volcanicity in the southwest Pacific centered near 17, 13, 10, 5 and 1 m.y. ago, especially in the middle and early late Miocene. In addition, submarine basaltic volcanism was widespread in the southeast Tasman Sea around the Eocene/Oligocene boundary, possibly related to the propagation of the Southeast Indian Ridge through western New Zealand as a continental rift system.
Resumo:
Notable compositional changes of organic matter are observed below the silica transition zone in thermally immature sediments. The increase of bitumen ratio, and hopane and sterane isomerization parameters indicate an acceleration of the kinetics of the chemical reactions which transform the organic matter. This phenomenon is probably due to the numerous mineral and textural changes induced by the transformation of amorphous biogenic silica into crystalline authigenic silica.
Resumo:
Geologie cores on two profiles oriented normaly to the continental shelf and slope, have been investigated to reconstruct the Quaternary sedimentary history of the southeast continental border of South Orkney (NW Weddell Sea). The sediments were described macroscopically and their fabric investigated by use of X-radiographs. Laboratory work comprised detailed grain-size analysis, determination of the watercontent, carbonate, organic carbon and sand fraction.composition. Stable oxygen and carbon isotopes have been measured On planktonic foraminifera. Palaeomagnetism, analysis of 230Th-content and detailed comparison of the lithlogic Parameters with the oxygen isotope stages (Martinson curve) were used for stratigraphic classification of the sediments. The sediment cores from the continental slope comprise a maximum age of 300,000 years B. P.. Bottom currents, ice rafting and biogenic input are the main sources of sediment. Based on lithologic parameters a distinction between glacial and interglacial facies is possible. Silty clays without microfossils and few bioturbation characterise the sediments of the glacial facies. Only small amounts of icerafted debris can be recognized. This type of sediment was accumulated during times of lower sea-level and drastically reduced rate of bottom water production. Based on grain-size distribution, bottom current velocities of 0.01 cmls were calculated. Thick sea-ice coverage reduced biogenic production in the surface water, and as consequence benthic communities were depleted. Because of the reduced benthic life, sediments are only slithly bioturbated. At the beginning of the interglacial Stage, the sea-level rised rapidly, and calving rate of icebergs, combined with input of ice-rafted material, increased considerably. Sediments of this transition facies are silty cliiys with a high proportion of coarse ice-rafted debris, but without microfossils. With the onset of bottom water production in connection with shelf ice water, sediments of interglacial facies were formed. They consist of silty clays to clayey silts with considerable content of sand and gravel. Sediments are strongly bioturbated. Based On the sediment caracteristics, current velocities of the bottom water were calculated to be of 0.96 cmls for interglacials. At the southern slope of a NW/SE-striking ridge, bottom water current is channelized, resulting in a drastic increase of current velocities. Current velocities up to 7.5 cm/s lead to formation of residual sediments. While the continental slope has predominantly fine sediments, the South Orkney shelf are mainly sandy silts and silty sands with a high proportion of gravel. These sediments were formed dominantly by ice-rafting during Brunhes- and Matuyama-Epoch. Currents removed the fine fraction of the sediments. Based on microfossil contents it was not possible to differentiate sediments from glacial to interglacial. In the upper Parts of the cores graded sequences truncated by erosion were observed. These sequences were formed during Brunhes-Epoch by strong currents with velocities decreasing periodically from about 7.5 cm/s to about 1 cm/s. Sediments with a high proportion of siliceous microfossils but barren of foraminifera compose the lower part of the shelf cores. These sediments have formed during the warmer Matuyama-Epoch.