97 resultados para Temporal and Spatial Variability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show here that increased variability of temperature and pH synergistically negatively affects the energetics of intertidal zone crabs. Under future climate scenarios, coastal ecosystems are projected to have increased extremes of low tide-associated thermal stress and ocean acidification-associated low pH, the individual or interactive effects of which have yet to be determined. To characterize energetic consequences of exposure to increased variability of pH and temperature, we exposed porcelain crabs, Petrolisthes cinctipes, to conditions that simulated current and future intertidal zone thermal and pH environments. During the daily low tide, specimens were exposed to no, moderate or extreme heating, and during the daily high tide experienced no, moderate or extreme acidification. Respiration rate and cardiac thermal limits were assessed following 2.5 weeks of acclimation. Thermal variation had a larger overall effect than pH variation, though there was an interactive effect between the two environmental drivers. Under the most extreme temperature and pH combination, respiration rate decreased while heat tolerance increased, indicating a smaller overall aerobic energy budget (i.e. a reduced O2 consumption rate) of which a larger portion is devoted to basal maintenance (i.e. greater thermal tolerance indicating induction of the cellular stress response). These results suggest the potential for negative long-term ecological consequences for intertidal ectotherms exposed to increased extremes in pH and temperature due to reduced energy for behavior and reproduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A decadal resolution time series of sea surface temperature (SST) spanning the last two millennia is reconstructed by combining a proxy record from a new sediment sequence with previously published data from core MD99-2275, north of Iceland. The alkenone based SST reconstruction is validated with historic observational data and compared to a new similar temporal resolution reconstruction obtained from sediment core RAPiD21-3K, in the subpolar North Atlantic. The two SST paleorecords show consistent multidecadal scale coolings throughout the interval and similar expressions during the contrasted climatic periods 'colloquially known' as the Medieval Climatic Anomaly (MCA) and Little Ice Age (LIA). In order to further understand the temporal and spatial SST variations and investigate the influence of natural forcings on the observed SST changes during the last millennium, we compare our time series to simulations using the Institut Pierre-Simon Laplace IPSLCM4-v2 climate model. This comparison highlights the potential importance of volcanism as a natural forcing driving coherent abrupt cooling events captured in the subpolar North Atlantic records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Eocene through earliest Oligocene (40-32 Ma) spans a major transition from greenhouse to icehouse climate, with net cooling and expansion of Antarctic glaciation shortly after the Eocene/Oligocene (E/O) boundary. We investigated the response of the oceanic biosphere to these changes by reconstructing barite and CaCO3 accumulation rates in sediments from the equatorial and North Pacific Ocean. These data allow us to evaluate temporal and geographical variability in export production and CaCO3 preservation. Barite accumulation rates were on average higher in the warmer late Eocene than in the colder early Oligocene, but cool periods within the Eocene were characterized by peaks in both barite and CaCO3 accumulation in the equatorial region. We infer that climatic changes not only affected deep ocean ventilation and chemistry, but also had profound effects on surface water characteristics influencing export productivity. The ratio of CaCO3 to barite accumulation rates, representing the ratio of particulate inorganic C accumulation to Corg export, increased dramatically at the E/O boundary. This suggests that long-term drawdown of atmospheric CO2 due to organic carbon deposition to the seafloor decreased, potentially offsetting decreasing pCO2 levels and associated cooling. The relatively larger increase in CaCO3 accumulation compared to export production at the E/O suggests that the permanent deepening of the calcite compensation depth (CCD) at that time stems primarily from changes in deep water chemistry and not from increased carbonate production.