559 resultados para Supplement of chromium
Resumo:
Facies zonation of the Cape basin with respect to Fe-Mn nodules based on data from Cruise 43 of R/V Akademik Kurchatov and published data is presented. Three facies regions are distinguished: the southern end of the Walvis Ridge and seamounts, the continental slope of the Southwest Africa and the deep-water Cape Basin. Iron-manganese nodules in the first of these areas are predominantly sedimentary, those in the second area are diagenetic and those in the third are sedimentary-diagenetic. Chemical characteristics and type of metallogenic specialization for each of the regions are identified.
Resumo:
During DSDP Leg 70, a 1.60 m thick manganese oxide layer was sampled in hole 509B. This deposit is formed of alternating layers of hard plates of pure todorokite, about 2 mm thick, and of a more powdery material deeply impregnated with manganese oxide, about 3 mm thick. A SEM study of the plates and the associated powder shows that the powdery material is a transformation of a pre-existing sediment, while the plates are a direct precipitation from a hydrothermal solution. The uranium series disequilibrium method was used to determine the ages of the plates. They are found to be in good chronological sequence and in accordance with the sedimentation rate of the area (4.9 cm/10^3 years) which implies that they have been formed at the sediment-seawater interface during a pulsed injection of hydrothermal solution. The powder presents systematically an "older age" which is explained by a slowing down of the injection while the normal sediment settles; the older age is due to the 230Th excess of the sediment.
Resumo:
Petrographic and geochemical study of basalts in the Kerguelen Plateau basement revealed changes in composition and character of volcanism during development of this tectonovolcanic structure. The Kerguelen Plateau is one of the largest intraplate rises in the World Ocean. It started to form about 120 Ma ago. Age of basalts and overlying sediments shows that plateau formation was in the northwest direction. Basalts of the Kerguelen Plateau basement are products of tholeiitic melts in terms of geochemistry, but differ from mid-ocean ridge basalt (MORB). They are enriched in incompatible trace elements and rare earth elements (REE) relative to MORB, and degree of enrichment varies in basalts from different segments of the plateau. Composition of basalts does not directly depend on their age. Specific features of plateau magmatism are commonly explained in terms of a long-living deep magma plume, which variously interacted with a depleted upper mantle source at different stages of plateau formation. However, taking into account block morphology and deep structure of the plateau, one can suggest that plateau volcanism was initiated by a large fault. As the volcanism prograded to the northwest, depth of fault penetration into the mantle changed. Composition of basalts in the plateau basement was also governed by formation depth of primary melts.
Resumo:
This report studies the principal paramters governing the distribution of iron-manganese concretions on the sea floor of the Indian Ocean, as well as their petrography and mineralogy. The results are mainly based on the recoveries made during voyages 31, 33 and 35 of the "Vityaz"' (1959-1962) and partly during voyages 36 and 41 (1964-1966). During these voyages samples of Mn concretions and Mn crust were collected (by bottom grabs, cores, trawlings, and dredgings) at 39 stations. The following account is devoted to the problems concerning the geochemistry of these concretions.
Resumo:
We present results of a microprobe investigation of fresh and least-deformed and metamorphosed gabbroic rocks from Leg 118, Hole 735B, drilled on the east side of the Atlantis II Fracture Zone, Southwest Indian Ridge. This rock collection comprises cumulates ranging from troctolites to olivine-gabbro and olivine-gabbronorite to ilmenite-rich ferrogabbros and ferrogabbronorites. As expected, the mineral chemistry is variable and considerably expands the usual oceanic reference spectrum. Olivine, plagioclase, and clinopyroxene are present in all the studied samples. Orthopyroxene and ilmenite, although not rare, are not ubiquitous. Olivine compositions range from Fo85 to Fo30, while plagioclase compositions vary from An70 to An27. Mg/(Mg + Fe2+) of clinopyroxene (mostly diopside to augite) varies from 0.88 to 0.54. Mg/(Mg + Fe2+) of orthopyroxene varies from 0.84 to 0.50. These minerals are not significantly zoned. All mineralogical data indicate that fractional crystallization is an important factor for the formation of cumulates. However, sharp contacts, interpreted as layering boundaries or intrusion margins, suggest polycyclic fractionation of several magma batches of limited volumes. Calculated compositions of magmas in equilibrium with the most magnesian mineral samples at the bottom of the hole represent fractionated liquids through separation of olivine, plagioclase, and clinopyroxene at moderate to low pressures (less than 9 kb). Crystallization of orthopyroxene and ilmenite occurs in the most differentiated liquids. Mixing of magmas having various compositions before entering the cumulate zone is another mechanism necessary to explain extremely differentiated iron-rich gabbros formed in this slow-spreading ridge environment.
Resumo:
The paper presents materials on composition and texture of weakly serpentinized ultrabasic rocks from the western and eastern walls of the Markov Deep (5°30.6'-5°32.4'N) in the rift valley of the Mid-Atlantic Ridge. Predominant harzburgites with protogranular and porphyroclastic textures contain two major generations of minerals: the first generation composes the bulk of rocks and consists of Ol_89.8-90.4 + En_90.2-90.8 + Di_91.8 + Chr (Cr#32.3-36.6, Mg#67.2-70.0), while the second generation composes very thin branching veinlets and consists of PlAn_32-47 + Ol_74.3-77.1 + Opx_55.7-71.9 + Cpx_67.5 + Amph_53.7-74.2 + Ilm. Syndeformational olivine neoblasts in recrystallization zones are highly magnesian. Concentrations and covariations of major elements in harzburgites indicate that these rocks are depleted in mantle residues (high Mg# of minerals and whole-rock samples and low in CaO, Al2O3, and TiO2) that are significantly enriched in trace HFSE and REE (Zr, Hf, Y, LREE, and all REE). Mineralogy and geochemistry of harzburgites were formed by interaction of mantle residues with hydrous, strongly fractionated melts that impregnated them. Mineral composition of veinlets in harzburgites and mineralogical-geochemical characteristics of related plagiogranites and gabbronorites suggest that these plagiogranites were produced by melt residuals after crystallization of gabbronorites. Modern characteristics of harzburgites were shaped by the following processes: (i) partial melting of mantle material simultaneously with its subsolidus deformations, (ii) brittle-plastic deformations associated with cataclastic flow and recrystallization, and (iii) melt percolation along zones of maximal stress relief and interaction of this melt with magnesian mantle residue.
Resumo:
Mineral compositions of the plagioclase-bearing ultramafic tectonites dredged and cored seaward of the continental slope of the Galicia margin (Leg 103, Site 637) were compared to mineral compositions from onshore low-pressure ultramafic bodies (southeastern Ronda, western Pyrenees, and Lizard Point), on the basis of standardized (30-s counting time) probe analyses. The comparison was extended to some plagioclase-free harzburgites related to ophiolites (Santa Elena in Costa Rica, north Oman, and the Humboldt body in New Caledonia) on the basis of new analytical data and data from the literature. The behavior of Cr, Na, Al, Mg, Fe, Ni, and Ti in olivine, pyroxenes, and spinel was examined in order to distinguish between the effects of partial melting and mineral facies change, from the spinel to plagioclase stability fields. The peridotite from the Galicia margin appears slightly depleted in major incompatible elements and experienced a minor partial melting. However, it experienced large scale but heterogeneous recrystallization in the plagioclase field. These features are very similar to those observed in Ronda, whereas in the western Pyrenees the minerals exemplify a very minor partial-melting event (or none at all) and have retained compositions corresponding to those of the relatively high-pressure Seiland sub facies. The minerals from the Lizard Point peridotite have characteristics (low Mg/(Mg + Fe) ratio; high Cr/(Cr + Al) ratio in spinel) more related to cumulate from a differentiated tholeiitic melt than related to ophiolitic tectonite. Diffusion profiles of Al and Cr across pyroxenes and spinel show that recrystallization features occurred at different speeds or temperatures in the different bodies. The pyroxenes from Ronda would have experienced recrystallization about 14 times faster than the peridotite from the Galicia margin. The western Pyrenean lherzolites also experienced rapid recrystallization; nevertheless, because they are of a different mineral facies, the data are not directly comparable to that from Ronda and Galicia. The harzburgite at Santa Elena as well as a xenolith from alkali basalt exemplify rapid cooling characterized by very weak re-equilibration. Recrystallization speed is related to emplacement speed in the present geological environment. The slow-rising Galicia margin peridotite was emplaced by thinning of the lithospheric subcontinental mantle near an incipient mid-oceanic ridge. The fast-rising peridotites from Ronda and the western Pyrenees were hot diapirs emplaced from the asthenosphere along transcurrent faults, possibly related to the opening of the Atlantic Ocean.
Resumo:
To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.
Resumo:
Reentry of Hole 462A during Leg 89 resulted in the penetration of a further 140 m of basalt sheet-flows similar to those found during Leg 61 at the same site. Twelve volcanic units (45 to 56) were recognized, comprising a series of rapidly extruded, interlayered aphyric and poorly clinopyroxene-plagioclase-olivine phyric, nonvesicular basalts. All exhibit variable, mild hydration and oxidation, relative to fresh oceanic basalts, produced under reducing, low-CO2-activity conditions within the zeolite facies. Secondary assemblages are dominated by smectites, zeolites, and pyrite, produced by low-temperature reaction with poorly oxygenated seawater. No systematic mineralogical or chemical changes are observed with depth, although thin quenched units and more massive hypocrystalline units exhibit slightly different alteration parageneses. Chemically, the basalts are olivine- and quartz-normative tholeiites, characterized by low incompatible-element abundances, similar to mildly enriched MORB (approaching T-type), with moderate, chrondite-normalized, large-ionlithophile- element depletion patterns and generally lower or near-chrondritic ratios for many low-distribution-coefficient (KD) element pairs. In general, relative to cyclic MORB chemical variation, they are uniform throughout, although 3 chemical megagroups and 22 subgroups are recognized. It is considered that the megagroups represent separate low-pressure-fractionated systems (olivine + Plagioclase ± clinopyroxene), whereas minor variations within them (subgroups) indicate magma mixing and generation of near-steady-state conditions. Overall, relatively minor fractionation coupled with magma mixing produced a series of compositionally uniform lavas. Parental melts were produced by similar degrees of partial melting, although the source may have varied slightly in LIL-element content.
Resumo:
Samples of chert, porcellanite, and chalk/limestone from Cretaceous chert-bearing sections recovered during Leg 198 were studied to elucidate the nature and origin of chert color zonations with depth/age. Sedimentary structures, trace fossils, compactional features, sediment composition, texture, geochemistry, and diagenetic history were compared among lithologies. Trends in major and minor element composition were determined. Whereas geochemical analyses demonstrate systematic elemental differences among the different lithologies, there are less distinct patterns in composition for the colored cherts. The color of the chert appears to be related primarily to the amount of silica and secondarily to the proportion of other components. Red cherts are almost pure silica with only minor impurities. This may allow pigmentation from fine Fe oxides to dominate the color. These red cherts are from places where geophysical logs indicate that chert is the dominant rock type of the section. These red chert intervals cannot be unequivocally distinguished from surrounding chert-bearing lithologies in terms of sedimentary structures.
Resumo:
During the International Indian Ocean Expedition (1964/65) sediment cores were taken on six profiles off the western coast of the Indian Subcontinent. These profiles run approximately perpendicular to the coast, from the deep-sea over the continental slope to the continental shelf. Additional samples and cores were taken in a dense pattern in front of the delta of the Indus River. This pattern of sampling covered not only marine sediments, but also river and beach sediments in Pakistan. The marine samples were obtained with piston, gravity and box corers and by a Van Veen grab sampler. The longest piston core is about 5 meters long. 1. Distribution of the elements on the sediment surface The area of maximal carbonate values (aprox. 80-100% CaCO3) essentially coincides with the continental shelf. The highest Sr values were observed largely within this area, but only in the vicinity of the Gulf of Cambay. Mainly the aragonitic coprolites are responsible for those high Sr contents. The Mg contents of the carbonates are comparatively low; surprisingly enough the highest Mg concentrations were also measured in the coprolites. The maximum contents of organic matter (Core) were found along the upper part of the continental slope. They coincide with the highest porosity and water content of the sediments. Frequently the decomposition of organic matter by oxydation is responsible for the measured Corg contents. On the other side the quantity of originally deposited organic material is less important in most cases. The enrichment of the "bauxitophile" elements Fe, Ti, Cr and V in the carbonate- and quartz-free portions of the sediments is essentially due to the influence of coarse terrigenous detritus. For the elements Mn, Ni and Cu (in per cent of the carbonateand quartz-free sediment) a strong enrichment was observed in the deep-sea realm. The strong increase in Mn toward the deep-sea is explained by authigenesis of Mn-Fe-concretions. Mn-nodules form only under oxydizing conditions which obviously are possible only at very low rates of deposition. The Mg, B and, probably also Mn contents in the clay minerals increase with increasing distance from the continent. This can be explained by the higher adsorption of those elements from sea water because of increasing duration of the clay mineral transport. The comparison of median contents of some elements in our deep-sea samples with deep-sea sediments described by TUREKIAN & WEDEPOHL (1961) shows that clear differences in concentration exist only in the case of "bauxitophile" elements Cr and Be. The Cr and Be contents show a clear increase in the Indian Ocean deep-sea samples compared to those described by TUREKIAn & WEDEPOHL (1961) which can obviously be attributed to the enrichment in the lateritic and bauxitic parent rocks. The different behaviour of the elements Fe, Ti and Mn during decomposition of the source rocks, transport to the sea and during oxydizing and reducing conditions in the marine environment can be illustrated by Ti02/Fe and MnO/Fe ratios. The different compositions of the sediments off the Indus Delta and those of the remaining part of the area investigated are characterized by a different distribution of the elements Mn and Ti. 2. Chemical inhomogenities in the sediments Most longer cores show 3 intervals defined by chemical and sedimentological differences. The top-most interval is coarse-grained, the intermedial interval is fine grained and the lower one again somewhat coarser. At the same time it is possible to observe differences from interval to interval in the organogenic and detrital constituents. During the formation of the middle interval different conditions of sedimentation from those active during the previous and subsequent periods have obviously prevailed. Looking more closely at the organogenic constituents it is remarkable that during the formation of the finer interval conditions of a more intensive oxydation have prevailed that was the case before and after: Core decreases, whereas P shows a relative increase. This may be explained by slower sedimentation rate or by a vertical migration of the oxygen rich zone of the sea-water. The modifications of the elements from minerals in detrital portion of the sediments support an explanation ascribing this fact to modifications of the conditions of denudation and transportation which can come about through a climatic change or through tectonic causes. The paleontological investigations have shown (ZOBEL, in press) that in some of the cores the middle stratum of fine sedimentation represents optimal conditions for organic life. This fact suggests also oxydizing conditions during the sedimentation of this interval. In addition to the depositional stratification an oxydation zone characterized by Mn-enrichment can be recognized. The thickness of the oxidation zone decreases towards the coast and thins out along the middle part of the continental slope. At those places, where the oxydation zone is extremely thin, enrichment of Mn has its maximum. This phenomenon can probably be attributed to the migration of Mn taking place in its dissociated form within the sediment under reducing conditions. On the other side this Mn-migration in the sediment does not take place in the deep-sea, where oxydizing conditions prevail. 3. Interstitial waters in the sediments Already at very small core depths, the interstitial waters have undergone a distinct modification compared with the overlying sea water. This distinct modification applies both to total salinity and to the individual ions. As to the beginning of diagenesis the following conclusions can be drawn: a) A strong K-increase occurs already at an early stage. It may be attributable to a diffusion barrier or to an exchange of Mg-ions on the clays. Part of this increase may also originate from the decomposition of K-containing silicates (mica and feldspars). A K-decrease owing to the formation of illite (WEAVER 1967), however, occurs only at much greater sediment depth. b) Because of an organic protective coating, the dissolution of carbonate is delayed in recent organogenic carbonates. At the same time some Ca is probably being adsorbed on clay minerals. Consequently the Ca-content of the interstitial water drops below the Ca-content of the sea water. c) Already at an early stage the Mg adsorption on the clays is completed. The adsorbed Mg is later available for diagenetic mineral formations and transformations.
Resumo:
Leg 140 of the Ocean Drilling Program deepened Hole 504B to a total depth of 2000.4 m below seafloor (mbsf), making it the deepest hole drilled into ocean crust. Site 504, south of the Costa Rica Rift, is considered the most important in-situ reference section for the structure of shallow ocean crust. We present the results of studies of magnetic mineralogy and magnetic properties of Hole 504B upper crustal rocks recovered during Legs 137 and 140. Results from this sample set are consistent with those discussed in Pariso et al. (this volume) from Legs 111, 137, and 140. Coercivity (Hc) ranges from 5.3 to 27.7 mT (mean 12 mT), coercivity of remanence (HCR) ranges from 13.3 to 50.6 mT (mean 26 mT), and the ratio HCR/HC ranges from 1.6 to 3.19 (mean 2.13). Saturation magnetization (JS) ranges from 0.03 to 5.94 * 10**-6 Am**2, (mean 2.52 * 10**-6 Am**2), saturation remanence (JR) ranges from 0.01 to 0.58 * 10**-6 Am2 (mean 0.37 * 10**-6 Am**2), and the ratio JR/JS ranges from 0.08 to 0.29 (mean 0.16), consistent with pseudo-single-domain behavior. Natural remanent magnetization (NRM) intensity ranges from 0.029 to 7.18 A/m (mean 2.95 A/m), whereas RM10 intensity varies only from 0.006 to 4.8 A/m and has a mean of only 1.02 A/m. Anhysteretic remanent magnetization (ARM) intensity ranges from 0.04 to 6.0 A/m, with a mean of 2.46 A/m, and isothermal remanent magnetization (IRM) intensity ranges from 0.5 to 1683 A/m, with a mean of 430.7 A/m. Volume susceptibility ranges from 0.0003 to 0.043 SI (mean 0.011 SI). In all samples examined, high-temperature oxidation of primary titanomagnetite has produced lamellae or pods of magnetite and ilmenite. Hydrothermal alteration has further altered the minerals in some samples to a mixture of magnetite, ilmenite, titanite, and a high-titanium mineral (either rutile or anatase). Electron microprobe analyses show that magnetite lamellae are enriched in the trivalent oxides Cr2O3, Al2O3, and V2O5, whereas divalent oxides (MnO and MgO) are concentrated in ilmenite lamellae.
Resumo:
Detailed data obtained on chemistry of sedimentary rocks from the Mountainous Crimea and the Northwestern Caucasus that were dated at the Cenomanian/Turonian boundary and formed during Oceanic Anoxic Event 2 make it possible to calculate dissolved oxygen concentration in bottom waters of the sedimentation basin. Enrichment factors of trace elements in black shales are revised and an explanation is suggested for genesis of the rocks with regard for unusual climatic changes.
Resumo:
In August-September 1991 during the SPASIBA expedition (Scientific Program on the Arctic and Siberian Aquatorium) aboard R/V Yakov Smirnitzky in the Laptev Sea ten samples of aerosols were collected by nylon nets. A combined approach including various analytical techniques, such as single-particle analysis, instrumental neutron activation analysis, and atomic absorption spectrophotometry, was used to study composition of the samples. Mass concentration of coarse-grained (>0.001 mm) insoluble fraction of aerosols ranged from 80 to 460 ng/m**3. In all the samples remains of land vegetation were found to be the dominant component. Organic carbon content of the aerosols ranged from 23 to 49%. Inorganic part of the samples was represented mainly by alumosilicates and quartz. Anthropogenic ''fly ash'' particles were observed in all the samples. Temporal variations of element concentrations resulted from differences in air masses entering the studied area.