95 resultados para Sulfide minerals--New Jersey--Camden County--Maps.
Resumo:
Eocene siliceous and calcareous phytoplankton, with emphasis on silicoflagellates, were studied in 62 samples from DSDP Sites 612 and 613 on the continental slope and rise off New Jersey. The mid-latitude assemblages correlate well with assemblages from California, Peru, and offshore of southern Brazil, but are distinctly different from high-latitude cold-water assemblages of the Falkland Plateau off southern Argentina. Coccoliths and silicoflagellates provide evidence for the presence of a fairly complete middle and upper Eocene sequence, represented by a composite of Sites 612 and 613. A major unconformity occurs at the middle Eocene to upper Eocene contact at Site 612. The genus Bachmannocena Locker is emended and proposed as a replacement for genus Mesocena Ehrenberg for ring silicoflagellates. Six new silicoflagellates and one new diatom are described: Bachmannocena apiculata monolineata Bukry, n. subsp., Corbisema amicula Bukry, n. sp., C. bimucronata elegans Bukry, n. subsp., C. hastata incohata Bukry, n. subsp., C. jerseyensis Bukry, n. sp., Dictyocha acuta Bukry, n. sp., and Coscinodiscus eomonoculus Bukry, n. sp. Also, one new replacement name, B. paulschulzn Bukry, nom. nov., and 24 new combinations are proposed for genus Bachmannocena.
Resumo:
Using methods of analysis from organic geochemistry and organic petrography, we investigated six Pliocene to Maestrichtian samples from DSDP Site 612 and five Pliocene to Eocene samples from DSDP Site 613 for the quantity, type, and thermal maturity of organic matter. At both sites, organic carbon content is low in the Eocene samples (0.10 to 0.20%) and relatively high in the Pliocene/Miocene samples (0.87 to 1.15%). The Maestrichtian samples from Site 612 contain about 0.6% organic carbon. The organic matter is predominantly terrigenous, as indicated by low hydrogen index values from Rock-Eval pyrolysis and the dominance of long-chain wax alkanes in the extractable hydrocarbons. The organic matter is at a low level of thermal maturity; measured vitrinite reflectance values were between 0.27 and 0.44%.
Resumo:
Sulfide petrography plus whole rock contents and isotope ratios of sulfur were measured in a 1.5 km section of oceanic gabbros in order to understand the geochemistry of sulfur cycling during low-temperature seawater alteration of the lower oceanic crust, and to test whether microbial effects may be present. Most samples have low SO4/Sum S values (<= 0.15), have retained igneous globules of pyrrhotite ± chalcopyrite ± pentlandite, and host secondary aggregates of pyrrhotite and pyrite laths in smectite ± iron-oxyhydroxide ± magnetite ± calcite pseudomorphs of olivine and clinopyroxene. Compared to fresh gabbro containing 100-1800 ppm sulfur our data indicate an overall addition of sulfide to the lower crust. Selection of samples altered only at temperatures <= 110 °C constrains microbial sulfate reduction as the only viable mechanism for the observed sulfide addition, which may have been enabled by the production of H2 from oxidation of associated olivine and pyroxene. The wide range in d34Ssulfide values (-1.5 to + 16.3 per mil) and variable additions of sulfide are explained by variable epsilon sulfate-sulfide under open system pathways, with a possible progression into closed system pathways. Some samples underwent oxidation related to seawater penetration along permeable fault horizons and have lost sulfur, have high SO4/Sum S (>= 0.46) and variable d34Ssulfide (0.7 to 16.9 per mil). Negative d34Ssulfate-d34Ssulfide values for the majority of samples indicate kinetic isotope fractionation during oxidation of sulfide minerals. Depth trends in sulfide-sulfur contents and sulfide mineral assemblages indicate a late-stage downward penetration of seawater into the lower 1 km of Hole 735B. Our results show that under appropriate temperature conditions, a subsurface biosphere can persist in the lower oceanic crust and alter its geochemistry.
Resumo:
An investigation of the isotopic composition of the interstitial waters was conducted at Sites 1071, 1072, and 1073 on the New Jersey continental shelf and slope during Ocean Drilling Program Leg 174A. Sites 1071 and 1072 are closely spaced drill holes on the continental shelf located ~130 km from the shoreline in 88 and 98 m of water, respectively. Site 1073 is located on the continental slope in 640 m water and penetrated a total of 664 m of sediment of which ~520 m is Quaternary age. A total of 125 oxygen and hydrogen isotopic analyses of pore fluids are presented from all three sites. Twelve strontium isotopic ratios are reported from Site 1071.
Resumo:
Lower Eocene calcareous nannofossil limestone cored at DSDP Site 612 on the middle slope off New Jersey represents an almost complete biostratigraphic sequence; only the lowest biozone (CP9a; NP10*) was not recovered. The thickness of the strata (198 m), the good preservation of the nannofossils, and the lack of long hiatuses justify the acceptance of this section as a lower Eocene reference for the western North Atlantic margin. The widely recognized and very similar nannofossil zonations of Martini (NP zones) and Bukry-Okada (CP zones) are emended slightly to make their lower Eocene biozones coeval; in addition, five new subzones are erected that subdivide zones CP10 and CPU (NP12 and NP13). Established biozone names are retained as they are altered little in concept, but alphanumeric code systems are changed somewhat by appending an asterisk (*) to identify zones that are emended. Zone CP10* (NP12*) is divided into two parts, the Lophodolithus nascens Subzone (CP10*a; NP12*a) and the Helicosphaera seminulum Subzone (CP10*b; NP12*b). Zone CPU* (NP13*) is divided into three parts, the Helicosphaera lophota Subzone (CP11*a; NP13*a), the Cyclicargolithuspseudogammation Subzone (CP11*b; NP13*b), and the Rhabdosphaera tenuis Subzone (CP11*c; NP13*c). At Site 612, a time-depth curve based on nannofossil datums dated in previous studies reveals a smoothly declining sediment accumulation rate, from 4.9 cm/10**3yr in CP10* (NP12*) to 2.8 cm/103 yr. in CP12* (NP14*). The ages of first-occurrence datums not previously dated are approximated by projection onto this timedepth curve and are as follows: Helicosphaera seminulum, 55.0 Ma; Helicosphaera lophota, 54.5 Ma; Cyclicargolithus pseudogammation, 53.7 Ma; Rhabdosphaera tenuis, 52.6 Ma; and Rhabdosphaera inflata, 50.2 Ma. At nearby Site 613 on the upper rise, strata of similar age, 139 m thick, contain an unconformity representing Subzone CPll*b (NP13*b) and a hiatus of approximately 1.1 m.y. duration. The sediment accumulation rate in the lower part of this section (9.7 cm/10**3yr.) is twice that observed for equivalent strata at Site 612. The hiatus and the heightened sediment accumulation rate at Site 613 probably represent the effects of episodic mass wasting on the early Eocene continental slope and rise.
Resumo:
Ninety-three samples from DSDP Leg 95, Sites 612 and 613, were examined for ostracodes to aid in the study of paleoceanography and paleodepth. In total, more than 25 genera were recovered. The most abundant and diverse ostracode assemblages were from the middle Eocene at both sites; lower and upper Eocene and Pliocene-Pleistocene assemblages were less abundant and were dominated by only three or four species. The middle Eocene assemblages were the most diagnostic of paleoenvironment and suggest water depths of 1000 to 2000 m. These assemblages are similar to other middle Eocene assemblages known from the Caribbean and North Atlantic, and signify a relatively cosmopolitan fauna that inhabited moderately deep but relatively warm bottom waters.
Resumo:
Evidence for the Chesapeake Bay Crater as the source for New Jersey continental margin ejecta is provided by fine-grained tektites and coarse-grained unmelted ejecta. The Upper Eocene ejecta deposit, now demonstrated to be part of the North American strewn field, occurs on the New Jersey continental margin at Ocean Drilling Program (ODP) Sites 904 and 903. The mineralogy, major oxide composition of the ejecta materials, and biostratigraphic age of the enclosing sediments link the origin of these ejecta to the recently recognized Chesapeake Bay impact crater, located only 330 km away. Sediments associated with the ejecta provide information about the dynamics of impact events. The 35-cm-thick ejecta-bearing layer can be subdivided into three subunits that indicate a sequence of events. Bottom subunit III documents sediment failure and deposition of gravel-sized fragments, middle subunit II records deposition of abundant sand-sized ejecta by gravity settling, and upper subunit I contains a 12-cm-thick sedimentary deposit containing rare silt-sized tektites and evidence of waning currents. These events are interpreted by linking sediment deposition to seismic ground motion and subsequent tsunami waves triggered by both the Chesapeake Bay impact and slope failures.
Resumo:
Surface hydrothermal deposits of the shallow-water Menez Gwen vent field located in the rift zone of the Mid-Atlantic Ridge are mostly composed of nonmetalliferous minerals in contrast to sulfide deposits of deep-water fields. Here sulfide minerals occur only in dispersed form. High-temperature sulfide deposits strongly enriched in copper and zinc occur only immediately below the surface of the bottom. This is related to subsurface boiling and phase separation of initial high-temperature hydrothermal ore-bearing solution that ascends from the interior to the floor surface.
Resumo:
The paper reports data on distribution of dissolved (Mn, Zn, Cu, Pb, and Cd) and particulate (Fe, Mn, Zn, Cu, Pb, Ni, and Co) species of metals in hydrothermal plumes above the active TAG and Broken Spur hydrothermal fields (26° N and 29° N in the MAR rift valley, respectively). Sediment trap data on fluxes of hydrothermal sedimentary material in the areas indicate that (i) the predominant Zn source for metalliferous sediments at the TAG field is material precipitating from the neutrally buoyant plume, and (ii) the predominant source of Fe and Co is re-deposited ore material coming from the area of extensive settling of sulfides.
Resumo:
The Baltic Sea has experienced three major intervals of bottom water hypoxia following the intrusion of seawater ca. 8 kyrs ago. These intervals occurred during the Holocene Thermal Maximum (HTM), Medieval Climate Anomaly (MCA) and during recent decades. Here, we show that sequestration of both Fe and Mn in Baltic Sea sediments generally increases with water depth, and we attribute this to shelf-to-basin transfer ("shuttling") of Fe and Mn. Burial of Mn in slope and basin sediments was enhanced following the lake-brackish/marine transition at the beginning of the hypoxic interval during the HTM. During hypoxic intervals, shelf-to-basin transfer of Fe was generally enhanced but that of Mn was reduced. However, intensification of hypoxia within hypoxic intervals led to decreased burial of both Mn and Fe in deep basin sediments. This implies a non-linearity in shelf Fe release upon expanding hypoxia with initial enhanced Fe release relative to oxic conditions followed by increased retention in shelf sediments, likely in the form of iron sulfide minerals. For Mn, extended hypoxia leads to more limited sequestration as Mn carbonate in deep basin sediments, presumably because of more rapid reduction of Mn oxides formed after inflows and subsequent escape of dissolved Mn to the overlying water. Our Fe records suggest that modern Baltic Sea hypoxia is more widespread than in the past. Furthermore, hypoxia-driven variations in shelf-to-basin transfer of Fe may have impacted the dynamics of P and sulfide in the Baltic Sea thus providing potential feedbacks on the further development of hypoxia.
Resumo:
We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ~19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ~12 m. Molar P/Fe ratios are then relatively constant to a depth of ~35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.
Resumo:
Calcareous nannofossil range charts for Leg 174A sites on the New Jersey continental margin are presented in this report, and nannofossil biostratigraphy is established. Nannofossil biostratigraphic resolution is low in shallow-water Sites 1071 and 1072, where nannofossils are generally rare or frequently absent. Site 1073 yields generally common to abundant nannofossils, which allows a fairly detailed nannofossil biostratigraphy for the entire Pleistocene through upper Eocene sequence. Quantitative and semiquantitative nannofossil data for the upper Pleistocene section from Site 1073 reveal an average sedimentation rate of about 80 cm/k.y. The unusually high sedimentation rate makes this calcareous section very valuable for high-resolution studies.
Resumo:
Mineralogy and geochemistry of sulfide-bearing rocks and ores discovered within the Menez Gwen Hydrothermal Field are studied. Samples were taken during Cruise 49 of R/V Akademik Mstislav Keldysh of the p.p. Shirshov Institute of Oceanology. Mineral composition of rocks and ores were studied by traditional methods of optical microscopy, scanning electron microscopy (CAMSCAN), and microprobe analysis (EPMA SX-50). Contents of trace elements were determined by laser ablation inductively coupled plasma - mass spectrometry (LA-ICP-MS). Zn-Cu ore comprises zonal sulfide chimney intergrowths. Numerous Se-rich copper ore fragments occur in volcanomictic layered gritstones and/or barite slabs. Mineral composition, zonality and association of trace elements in ore are typical of black smokers formed at the basalt base near the Azores Triple Junction in the MAR. Obtained results make it possible to reconstruct formation history of the Menez Gwen Hydrothermal Field into the high-temperature (Cu-Se association in ore clasts), medium-temperature (Zn-Cu-As association in ore), and recent (Ba-SiO2 association) stages.
Resumo:
Firm stratigraphic correlations are needed to evaluate the global significance of unconformity bounded units (sequences). We correlate the well-developed uppermost Campanian and Maestrichtian sequences of the New Jersey Coastal Plain to the geomagnetic polarity time scale (GPTS) by integrating Sr-isotopic stratigraphy and biostratigraphy. To do this, we developed a Maestrichtian (ca. 73-65 Ma) Sr-isotopic reference section at Deep Sea Drilling Project Hole 525A in the southeastern Atlantic Ocean. Maestrichtian strata can then be dated by measuring their 87Sr/86Sr composition, calibrating to the GPTS of S. C. Cande and D. V. Kent (1993, personal commun.), and using the equation Age (Ma) = 37326.894-52639.89 (87Sr/86Sr). Sr-stratigraphic resolution for the Maestrichtian is estimated as +-1.2 to +-2 m.y. At least two unconformity-bounded units comprise the uppermost Campanian to Maestrichtian strata in New Jersey. The lower one, the Marshalltown sequence, is assigned to calcareous nannofossil Zones CC20/21 (~NC19) and CC22b (~NC20). It ranges in age from ~74.1 to 69.9 Ma based on Sr-isotope age estimates. The overlying Navesink sequence is assigned to calcareous nannoplankton Zones CC25-26 (~NC21-23); it ranges in age from 69.3 to 65 Ma based on Sr-isotope age estimates. The upper part of this sequence, the Tinton Formation, has no calcareous planktonic control; Sr-isotopes provide an age estimate of 66 +- 1.2 Ma (latest Maestrichtian). Sequence boundaries at the base and the top of the Marshalltown sequence match boundaries elsewhere in the Atlantic Coastal Plain (Owens and Gohn, 1985) and the inferred global sea-level record of Haq et al. (1987); they support eustatic changes as the mechanism controlling depositional history of this sequence. However, the latest Maestrichtian record in New Jersey does not agree with Haq et al. (1987); we attribute this to correlation and time-scale differences near the Cretaceous/Paleogene boundary. High sedimentation rates in the latest Maestrichtian of New Jersey (Shrewsbury Member of the Red Bank Formation and the Tinton Formation) suggest tectonic uplift and/or rapid progradation during deposition of the highstand systems tract.